摘要:
A holographic system for recording and reading information is provided. The system includes at least one laser for providing a laser beam. The system also includes a subsystem configured for multi-wavelength operation of said holographic system and recording micro-holograms at different wavelengths in substantially non-overlapping volumes of a holographic medium.
摘要:
A method of producing a polycarbonate, the method comprising:polymerizing a dihydric phenol and a carbonate precursor in the presence of oxalic acid to produce a polycarbonate with a yellowness index of less than or equal to 10 measured in accordance with ASTM E313 test method on molded samples having a thickness of about 2.5 millimeters;wherein the amount of oxalic acid ranges from about 20 parts per million to about 350 parts per million, relative to an amount of the dihydric phenol; wherein the dihydric phenol is represented by Formula (I): wherein R is a hydrogen atom or an aliphatic functionality having 1 to 6 carbon atoms; and n is an integer having a value of 1 to 4.
摘要:
A method of preparing polycarbonate includes a steps of providing a melt reaction mixture and allowing the melt reaction mixture to react to build molecular weight, thereby preparing the polycarbonate. The melt reaction mixture has a dihydroxy compound, an ester substituted diaryl carbonate mixture, and a melt transesterification catalyst where the ester substituted diaryl carbonate mixture may contain acid-substituted phenol. The method also includes the step of adjusting the molar ratio of acid-substituted phenol, if present, to melt transesterification catalyst (acid-substituted phenol/catalyst) in the melt reaction mixture to an amount of less than 10.
摘要:
A method for preparing a molded article includes the steps of (a) obtaining a polycarbonate resin and (b) molding the polycarbonate resin. The polycarbonate resin is made by a transesterification reaction using an activated diaryl carbonate such that the polycarbonate is susceptible to the formation of internal ester linkages (IEL). The method occurs with the proviso that the polycarbonate resin, the molding conditions or both are selected to control the amount of IEL formed during the molding process to a level of less than 0.4 mol %.
摘要:
A method of producing a polycarbonate, the method comprising:polymerizing a dihydric phenol and a carbonate precursor in the presence of oxalic acid to produce a polycarbonate with a yellowness index of less than or equal to 10 measured in accordance with ASTM E313 test method on molded samples having a thickness of about 2.5 millimeters;wherein the amount of oxalic acid ranges from about 20 parts per million to about 350 parts per million, relative to an amount of the dihydric phenol; wherein the dihydric phenol is represented by Formula (I): wherein R is a hydrogen atom or an aliphatic functionality having 1 to 6 carbon atoms; and n is an integer having a value of 1 to 4.
摘要:
High yields of ester-substituted diary carbonates such as bis-methyl salicyl carbonate were obtained by the condensation of ester-substituted phenols with phosgene in the presence of a phase transfer catalyst (PTC) and optionally a tertiary amine catalyst in a solvent free reaction system comprising an aqueous phase held at a pH of 8.3 or higher. The optimized conditions of the present invention use an excess of ester-substituted phenol relative to phosgene and high conversion of phosgene to ester-substituted diaryl carbonate is observed. The product ester-substituted diaryl carbonate may be conveniently isolated as a solid by filtration or as a liquid in which the excess ester-substituted phenols serves as solvent. The method represents an attractive route for the manufacture of bis methyl salicyl carbonate and ester-substituted diaryl carbonates generally. The ester-substituted diaryl carbonates are useful for the preparation and modification of polycarbonates.
摘要:
The present invention relates to methods and devices for in-situ measurement of reaction components of interest during manufacturing of polycarbonate by melt polymerization. The present invention describes irradiating a molten polymer sample with UV/visible light, and generating an absorbance profile correlated to Fries products as well as uncapped phenolic groups in the sample. The methods and apparatus of the invention are suitable for monitoring of Fries products in reactions ranging in size from small scale combinatorial formats to production scale reactors. Also included in methods of the invention are univariate and multivariate analysis for prediction of linear Fries, branched Fries and uncapped phenolic end-groups in unknowns.
摘要:
The present invention provides a method for monitoring a reaction mixture using Raman spectroscopy. In a preferred embodiment, the invention provides a method for monitoring bulk and thin film melt polycarbonate polymerization reactions. In this method, the relative and absolute concentrations of the starting materials diphenylcarbonate (DPC) and bisphenol-A (BPA) are determined. Monitoring and maintenance of optimum stoichiometry in such a reaction is critical to ensuring desired polycarbonate product quality.
摘要:
In an embodiment, the present invention is directed a method and an apparatus comprising irradiating a polymer sample with at least one wavelength of substantially monochromatic light and monitoring radiation emitted by the polymer sample which is correlated to sample hydrolysis and a change in polymer molecular weight.
摘要:
High yields of ester-substituted diary carbonates such as bis-methyl salicyl carbonate were obtained by the condensation of ester-substituted phenols with phosgene in the presence of a phase transfer catalyst (PTC) and optionally a tertiary amine catalyst in a solvent free reaction system comprising an aqueous phase held at a pH of 8.3 or higher. The optimized conditions of the present invention use an excess of ester-substituted phenol relative to phosgene and high conversion of phosgene to ester-substituted diaryl carbonate is observed. The product ester-substituted diaryl carbonate may be conveniently isolated as a solid by filtration or as a liquid in which the excess ester-substituted phenols serves as solvent. The method represents an attractive route for the manufacture of bis methyl salicyl carbonate and ester-substituted diaryl carbonates generally.