Abstract:
A cable enclosure assembly includes an enclosure, a cable spool and a length of fiber optic cable. The enclosure defines an interior region, a first opening and a second opening aligned with the first opening. The first and second openings provide access to the interior region. The cable spool is disposed in the interior region of the enclosure and is rotatably engaged with the enclosure. The cable spool includes a drum and a flange engaged to the drum. The flange has an outer peripheral side, a cable management portion and an adapter bulkhead portion. The adapter bulkhead portion extends outwardly from the cable management portion and forms a portion of the outer peripheral side. The length of the fiber optic cable is dispose about the drum of the cable spool.
Abstract:
A fiber optic enclosure assembly includes a housing having an interior region and a bearing mount disposed in the interior region of the housing. A cable spool is connectedly engaged with the bearing mount such that the cable spool selectively rotates within the housing. A termination module disposed on the cable spool so that the termination module rotates in unison with the cable spool. A method of paying out a fiber optic cable from a fiber optic enclosure includes rotating a cable spool, which has a subscriber cable coiled around a spooling portion of the cable spool, about an axis of a housing of the fiber optic enclosure until a desired length of subscriber cable is paid out. A termination module is disposed on the cable spool.
Abstract:
A fiber optic connector and cable assembly includes a cable and a fiber optic connector. The connector has a main connector body, a ferrule, a spring for biasing the ferrule, and a spring push for retaining the spring within the main connector body. A crimp band is provided for securing the fiber optic cable to the fiber optic connector. The crimp band includes a first portion securing a cable strength member. The crimp band also includes a second portion crimped down on a jacket of the cable. The crimp band further includes an inner surface having gripping structures for gripping the strength member and/or the jacket.
Abstract:
A fiber optic connector and cable assembly is disclosed herein. The fiber optic connector and cable assembly includes a cable having at least one optical fiber, a jacket surrounding the optical fiber and at least one strength member for reinforcing the fiber optic cable. The fiber optic connector and cable assembly also includes a fiber optic connector having a main connector body having a distal end and a proximal end. The fiber optic connector also includes a ferrule supporting an end portion of the optical fiber. The ferrule is mounted at the distal end of the main connector body. The fiber optic connector further includes a spring for biasing the ferrule in a distal direction and a spring push for retaining the spring within the main connector body. The spring push is mounted at the proximal end of the main connector body. The spring push includes a main body and a stub that projects proximally outwardly from the main body. A crimp band is provided for securing the fiber optic cable to the fiber optic connector. The crimp band includes a first portion crimped down on the stub. The strength member is secured between the first portion of the crimp band and the stub. The crimp band also includes a second portion crimped down on the jacket of the fiber optic cable. The crimp band further includes an inner surface having gripping structures for gripping the strength member and/or the jacket.
Abstract:
A fiber optic enclosure assembly includes a housing having an interior region and a bearing mount disposed in the interior region of the housing. A cable spool is connectedly engaged with the bearing mount such that the cable spool selectively rotates within the housing. A termination module disposed on the cable spool so that the termination module rotates in unison with the cable spool. A method of paying out a fiber optic cable from a fiber optic enclosure includes rotating a cable spool, which has a subscriber cable coiled around a spooling portion of the cable spool, about an axis of a housing of the fiber optic enclosure until a desired length of subscriber cable is paid out. A termination module is disposed on the cable spool.
Abstract:
A cable enclosure assembly includes an enclosure, a cable spool and a length of fiber optic cable. The enclosure defines an interior region, a first opening and a second opening aligned with the first opening. The first and second openings provide access to the interior region. The cable spool is disposed in the interior region of the enclosure and is rotatably engaged with the enclosure. The cable spool includes a drum and a flange engaged to the drum. The flange has an outer peripheral side, a cable management portion and an adapter bulkhead portion. The adapter bulkhead portion extends outwardly from the cable management portion and forms a portion of the outer peripheral side. The length of the fiber optic cable is dispose about the drum of the cable spool.
Abstract:
A telecommunications device includes a module that mounts within an interior of a housing. The housing has a door that latches closed. The module includes a module frame having a bulkhead that divides the interior of the housing into first and second regions. Fiber optic adapters are mounted to the bulkhead. First ports of the adapters are accessible at the first region of the housing interior and second ports are accessible at the second region of the housing interior. The module includes a removable cover for restricting access to the first region. The removable cover including a latch catch that interlocks with the door latch to secure the door in the closed position. The module includes a tray mounted to the module frame within the first region of the housing.
Abstract:
A fiber optic enclosure assembly includes a housing having an interior region and a bearing mount disposed in the interior region of the housing. A cable spool is connectedly engaged with the bearing mount such that the cable spool selectively rotates within the housing. A termination module disposed on the cable spool so that the termination module rotates in unison with the cable spool. A method of paying out a fiber optic cable from a fiber optic enclosure includes rotating a cable spool, which has a subscriber cable coiled around a spooling portion of the cable spool, about an axis of a housing of the fiber optic enclosure until a desired length of subscriber cable is paid out. A termination module is disposed on the cable spool.
Abstract:
A cell site includes a tower, a multi-service terminal mounted to the tower and a base transceiver station in communication with the multi-service terminal. The multi-service terminal includes a housing and a plurality of adapters mounted to the housing. Each of the adapters includes an outer port accessible from outside the housing and an inner port accessible from inside the housing.
Abstract:
A cable enclosure assembly includes an enclosure, a cable spool and a length of fiber optic cable. The enclosure defines an interior region, a first opening and a second opening aligned with the first opening. The first and second openings provide access to the interior region. The cable spool is disposed in the interior region of the enclosure and is rotatably engaged with the enclosure. The cable spool includes a drum and a flange engaged to the drum. The flange has an outer peripheral side, a cable management portion and an adapter bulkhead portion. The adapter bulkhead portion extends outwardly from the cable management portion and forms a portion of the outer peripheral side. The length of the fiber optic cable is dispose about the drum of the cable spool.