摘要:
Methods, apparatus and systems for map reconstruction based on wireless tracking are described. In one example, a described system comprises: a sensor configured to collect sensing data in a venue and obtain a plurality of trajectories, and a processor. Each trajectory is a time series of spatial coordinates (TSSC) representing a path traversed by a respective object in the venue. Each TSSC is accompanied by at least one respective time series of sensing data (TSSD) collected while the respective object traverses the path in the venue. The processor is configured for: segmenting each TSSC and its accompanying at least one TSSD into segments, bundling the plurality of trajectories based on similarity measures between pairs of the segments, fusing the bundled trajectories to generate fused trajectories, computing a shape of the fused trajectories, and generating a map of the venue based on the computed shape.
摘要:
The FIGURE is a front view of a display screen or portion thereof with graphical user interface according to the claimed design. The outermost broken lines illustrate a display screen or portion thereof and form no part of the claimed design. The remaining broken lines, including all text and icons, illustrate portions of the graphical user interface that form no part of the claimed design.
摘要:
Methods, apparatus and systems for wireless vital sign monitoring are described. In one example, a described system comprises: a transmitter configured to transmit a wireless signal through a wireless channel of a venue; a receiver configured to receive the wireless signal through the wireless channel that is being impacted by an object motion of an object in the venue; and a processor. At least one of the transmitter or the receiver comprises an array of antennas used to transmit or receive the wireless signal. The object motion comprises at least one non-periodic body motion of the object and at least one periodic vital-sign motion of the object. The processor is configured for: segmenting space around the venue into a plurality of sectors based on a beamforming and the received wireless signal, wherein each sector of the plurality of sectors is associated with a spatial direction relative to the array of antennas, obtaining a plurality of time series of channel information (CI) of the wireless channel based on the beamforming, wherein each time series of CI (TSCI) of the plurality of TSCI is associated with a respective sector of the plurality of sectors, isolating the object motion of the object in the plurality of TSCI to generate a plurality of isolated TSCI, compensating for the at least one non-periodic body motion of the object in the plurality of isolated TSCI to generate a plurality of compensated TSCI, and monitoring the at least one periodic vital-sign motion of the object based on the plurality of compensated TSCI.
摘要:
Methods, apparatus and systems for wireless motion recognition are described. In one example, a described system comprises: a transmitter configured for transmitting a first wireless signal through a wireless multipath channel of a venue; a receiver configured for receiving a second wireless signal through the wireless multipath channel; and a processor. The second wireless signal differs from the first wireless signal due to the wireless multipath channel that is impacted by a motion of an object in the venue. The processor is configured for: obtaining a time series of channel information (TSCI) of the wireless multipath channel based on the second wireless signal, tracking the motion of the object based on the TSCI to generate a gesture trajectory of the object, and determining a gesture shape based on the gesture trajectory and a plurality of pre-determined gesture shapes.
摘要:
Methods, apparatus and systems for radio-assisted signal estimation are described. In one example, a described system comprises: a sensor configured to obtain a baseband mixture signal in a venue; a transmitter configured to transmit a first radio signal through a wireless channel of the venue; a receiver configured to receive a second radio signal through the wireless channel; and a processor. The baseband mixture signal comprises a mixture of a first source signal and an additional signal. The first source signal is generated by a first motion of a first object in the venue. The second radio signal differs from the first radio signal due to the wireless channel and at least the first motion of the first object in the venue. The processor is configured for: obtaining a radio feature of the second radio signal, constructing a first adaptive filter for the baseband mixture signal based on the radio feature, filtering the baseband mixture signal using the first adaptive filter to obtain a first output signal, and generating an estimation of the first source signal based on the first output signal.
摘要:
Methods, apparatus and systems for wireless vital monitoring are described. In one example, a described system comprises: a transmitter configured for transmitting a first wireless signal through a wireless channel of a venue; a receiver configured for receiving a second wireless signal through the wireless channel; and a processor. The second wireless signal comprises a reflection of the first wireless signal by at least one living being having at least one repetitive motion in the venue. The processor is configured for: obtaining a time series of channel information (TSCI) of the wireless channel based on the second wireless signal; generating, for each living being of the at least one living being, a vital signal representing all repetitive motions of the living being based on the TSCI; extracting, from the vital signal of each living being, a heartbeat signal; and monitoring, for each living being in the venue, a heart rate variability based on the heartbeat signal.
摘要:
Pilot data and data-bearer data are formed to be mutually orthogonal and in each other's null-space. Data to be transmitted is first modulated with the data-bearer matrix and then pilot data is added thereto. The pilot data may be added to each modulated symbol, thereby increasing significantly the density of pilot information available at the receiver for channel state estimation. When pilot data is added across an entire transmitted block of data, data detection performance is improved for even fast fading Rayleigh fading channels.
摘要:
In a mobile cellular communications system power control and space-time diversity are applied in combination to the uplink and downlink. In the uplink, mobile powers and equalization/diversity combining vectors at base stations are, calculated jointly, with the result that the mobile transmitted power is minimized, while the Signal to Noise Ratio (SNR) at each link is maintained above a threshold. In the downlink, a multitap transmit diversity strategy adjusts the transmit weight vectors with the result that the SNR at each mobile is set to a specified value. The combination of power control and space-time diversity apply to networks with fading channels, including networks in which the number of cochannels and multipaths are larger than the number of antenna elements. The invention achieves the optimal solution for the uplink that minimizes the mobile power, and achieves a feasible solution for the downlink if there exists any.
摘要:
An algorithm is created and applied to reconstruct the wavelet coefficients of an image from the Radon transform data for use in computed tomography, with a disclosed method that uses the properties of wavelets to localize the Radon transform such that a local region of the cross section of a body can be reconstructed using almost completely local data to significantly reduce the amount of exposure and computations in X-ray tomography. The described algorithm is based on the observation that for some wavelet bases with sufficiently many vanishing moments, the ramp-filtered version of the scaling function as well as the wavelet function has extremely rapid decay, with the variance of the elements of the nullspace is being negligible in the locally reconstructed image.