Abstract:
The present invention in one aspect relates to a solar cell formed on a substrate, a bottom electrode member formed on the solar cell, an electrophoretic display panel formed on the bottom electrode member, having a plurality of electrophoretic cell structures spatially arranged in a matrix form, each electrophoretic cell structure containing a plurality of charged particles movable in the electrophoretic cell structure responsively to applied fields, and a top electrode member formed on the electrophoretic display panel, where at least one of the bottom electrode member and the top electrode member includes a plurality of in-plane switching (IPS) electrodes. Each IPS electrode is positioned in relation to a corresponding electrophoretic cell structure for controlling movements of the charged particles therein along a horizontal direction parallel to the electrophoretic display panel.
Abstract:
A touch sensing substrate includes a substrate, first and second sensing series, a first dielectric layer, first and second dummy sensing series, a second dielectric layer, and a common electrode. The first sensing series are electrically insulated from each other, and so are the second sensing series. The first and the second sensing series are covered by the first dielectric layer. The first and the second dummy sensing series are disposed on the first dielectric layer. The first and the second dummy sensing series are disposed above the first and the second sensing series, respectively, and the dummy sensing series and the sensing series corresponding thereto have the same potential. The first and the second dummy sensing series are covered by the second dielectric layer. The common electrode is disposed on the second dielectric layer. A touch sensing liquid crystal display having the above-mentioned touch sensing substrate is also provided.
Abstract:
A display panel and a color filter substrate thereof are provided. The display panel includes a first substrate, an alignment structure set, a second substrate, a pixel electrode, and a liquid crystal layer. The alignment structure set includes a first and a second alignment units disposed on the upper electrode. The first alignment unit is different from the second alignment unit. The pixel electrode is formed on the second substrate and includes a first electrode and a second lower electrode opposite to the first and second alignment units, respectively. A color filter may be disposed between the first substrate and the alignment structure layer to form a color filter substrate.
Abstract:
In a method of fabricating a flexible display panel, a rigid substrate is provided. A flexible substrate having a first surface and a second surface opposite to the first surface is provided. A plurality of releasing-regions are formed on the first surface, and bonding strength of an area outside the releasing-regions is greater than bonding strength of the releasing-regions. An adhesive layer is formed between the rigid substrate and the first surface of the flexible substrate. A plurality of display units are formed on the second surface, and each of the display units is located over one of the releasing-regions, respectively. The flexible substrate is patterned to obtain a plurality of flexible carriers, and each of the flexible carriers carries one of the display units, respectively. The flexible carriers and the adhesive layer are de-bonded.
Abstract:
The present invention in one aspect relates to a solar cell formed on a substrate, a bottom electrode member formed on the solar cell, an electrophoretic display panel formed on the bottom electrode member, having a plurality of electrophoretic cell structures spatially arranged in a matrix form, each electrophoretic cell structure containing a plurality of charged particles movable in the electrophoretic cell structure responsively to applied fields, and a top electrode member formed on the electrophoretic display panel, where at least one of the bottom electrode member and the top electrode member includes a plurality of in-plane switching (IPS) electrodes. Each IPS electrode is positioned in relation to a corresponding electrophoretic cell structure for controlling movements of the charged particles therein along a horizontal direction parallel to the electrophoretic display panel.
Abstract:
A transflective liquid crystal display panel includes a first substrate, a second substrate arranged opposite to the first substrate, and a plurality of pixels positioned between the first substrate and the second substrate. Each of the pixels having at least one reflecting region and at least one transmitting region includes a color filter layer formed on the substrate and located in both of the reflecting region and the transmitting region, at least one first reflective layer formed between the color filter layer and the substrate and located in the reflecting region, at least one switch element located in the reflecting region, and at least one second reflective layer located in the reflecting region.
Abstract:
A transflective LCD device includes an array substrate and a color filter. The substrate includes a plurality gate lines, a plurality of common lines, and a plurality of data lines substantially crossing the gate lines to define a plurality of sub-pixel regions. Each sub-pixel region has a reflective area and a transmissive area. Two of the reflective area of two adjacent sub-pixel regions in the same column are juxtaposed to each other. The color filter has a plurality of sub-pixel regions respectively aligned with the sub-pixel regions of the array substrate. The color filter includes an insulating layer disposed on the reflective area of a respective sub-pixel region. An LC layer is disposed between the array substrate and the color filter.
Abstract:
A reflective type touch-sensing display panel including a front substrate, scan lines, data lines, pixel structures, photo-sensors, readout devices, a rear substrate and a reflective display medium is provided. The front substrate has an inner surface. The scan lines and the data lines are on the inner surface of the front substrate and intersected to each other. The pixel structures are disposed on the inner surface of the front substrate, and each pixel structure is electrically connected to one of the scan lines and one of the data lines correspondingly. The photo-sensors are disposed on the inner surface of the front substrate. Each readout device is electrically connected to one of the photo-sensor correspondingly. The rear substrate is disposed opposite to the front substrate. The reflective display medium is sealed between the front substrate and the rear substrate.
Abstract:
A pixel structure formed on a substrate and electrically connected with a scan line and a data line, and including a semiconductor pattern and a pixel electrode is provided. The semiconductor pattern includes at least two channel areas, at least one doping area, a source area, and a drain area. The channel areas are located below the scan line and have different aspect ratios. The doping area is connected between the channel areas. The pixel electrode electrically connects the drain area, the source area is connected between one of the channel areas and the data line, and the drain area is connected between the other channel area and the pixel electrode. The scan line has different widths above different channel areas, and a length of each channel area is substantially equal to the width of the scan line.
Abstract:
A liquid crystal display device uses a first quarter-wave retardation film and a hybrid aligned nematic film to reduce light leakage in dark state for reaching high contrast ratio, and uses multiple-gamma IC to provide different gamma-curve signals for pixels of different colors to solve color shift problem. In addition, the liquid crystal display device may use a second quarter-wave retardation film to reduce light leakage when viewed in a wide angle so as to further provide higher contrast ratio.