摘要:
Acoustic ranging may involve determining a distance between a first device and at least one other device using one or more acoustic signals. In an example embodiment, a first device emits a first acoustic signal and then receives the first acoustic signal at a first time. The first device also receives a second acoustic signal at a second time, with the second acoustic signal having been emitted by a second device. The first device ascertains a first value that reflects a difference between the first time and the second time. Responsive to at least the ascertained first value, the first device determines a distance between the first device and the second device.
摘要:
Systems and methods for distributed overlay multi-channel MAC for wireless ad hoc networks are described. In one aspect, the systems and methods divide channel frequencies defined by a wireless network protocol into a single home channel and multiple guest channels that are orthogonal to the home channel. Each of the network nodes in the ad hoc network operates on the home channel for respective variable and overlapping amounts of time to maintain network connectivity with other respective network nodes. Additionally, each of the network nodes determines whether and when to switch from the home channel to a particular guest channel of the guest channels for a variable amount of time to increase data throughput over one or more corresponding communication links in the ad hoc network with other network node(s).
摘要翻译:描述了用于无线自组织网络的分布式覆盖多信道MAC的系统和方法。 在一个方面,系统和方法将由无线网络协议定义的信道频率划分成单个归属信道和与归属信道正交的多个客户信道。 ad hoc网络中的每个网络节点在归属信道上操作相应的可变和重叠的时间量,以维持与其他各个网络节点的网络连接。 另外,每个网络节点确定是否以及何时何时从客户信道切换到客户信道的特定客体信道一段可变的时间量,以增加具有其他的自组织网络中的一个或多个对应的通信链路上的数据吞吐量 网络节点。
摘要:
Systems and methods that facilitate remote wake up are described that provide for efficient and transparent wake up of target hosts by remote hosts. In various embodiments, a separate address can be used by a target host for wake up network traffic, which is different from a regular address associated with a target host for normal network communications. In addition, the disclosed subject matter facilitates controlling wake up operations according to trust, identity, and/or a wake up policy.
摘要:
Acoustic ranging may involve determining a distance between a first device and at least one other device using one or more acoustic signals. In an example embodiment, a first device emits a first acoustic signal and then receives the first acoustic signal at a first time. The first device also receives a second acoustic signal at a second time, with the second acoustic signal having been emitted by a second device. The first device ascertains a first value that reflects a difference between the first time and the second time. Responsive to at least the ascertained first value, the first device determines a distance between the first device and the second device.
摘要:
Embodiments include processes, systems, and devices for reshaping virtual baseband signals for transmission on non-contiguous and variable portions of a physical baseband, such as a white space frequency band. In the transmission path, a spectrum virtualization layer maps a plurality of frequency components derived from a transmission symbol produced by a physical layer protocol to sub-carriers of the allocated physical frequency band. The spectrum virtualization layer then outputs a time-domain signal derived from the mapped frequency components. In the receive path, a time-domain signal received on the physical baseband is reshaped by the virtual spectrum layer in order to recompose a time-domain symbol in the virtual baseband.
摘要:
An extended wireless access point may have many distributed radio units connected to associated processing units via a radio transmission network comprising commodity switches controlled by one or more network controllers. The one or more network controllers may use a load balancing algorithm to select a processing unit to process a signal received by a distributed radio unit. The radio units may receive a wireless signal, and generate compressed samples of the wireless signal for transport via the radio transmission network and processing by a selected processing unit. Similarly, a processing unit may generate and transmit via the radio transmission network compressed samples for decompression and transmission by a radio unit.
摘要:
Systems and methods that facilitate inter-process networking are described that can provide inter-process communication, firewall restrictions, process and host mobility, as well as parallelization of task performance. In various embodiments, a computer process can be provided with its own internet protocol address and network stack to facilitate inter-process networking. In further embodiments, a gateway process can facilitate process mobility, host mobility, and parallelization of task performance, as well as management of a host area network by facilitating inter-process communication between suitably configured processes.
摘要:
Implementations for retransmitting erroneous portions within a transmission frame are described. A sender transmits a transmission frame and the receiver performs error detection on portions of the transmission frame in order to determine if any are received in error. The receiver sets up a feedback channel and transmits acknowledgements to the receiver to indicate that one or more portions have been received and to identify any portions that are received with errors. At least some of the acknowledgements are transmitted prior to receipt of the entire transmission frame. The sender retransmits any portions that are identified as being erroneous within the transmission frame.
摘要:
An extensive use of look-up table (LUT) and single instruction multiple data (SIMD) in different algorithms in a software-defined radio (SDR) system is described. In particular, the LUT is used during spreading modulation, mapping and spreading, scrambling, de-scrambling, soft demapping, and the like. The SIMD is executed by a multi-core processor during implementation of a “min” operation to find an optimal path in a Trellis diagram for a Viterbi decoder.
摘要:
Embodiments include processes, systems, and devices for reshaping virtual baseband signals for transmission on non-contiguous and variable portions of a physical baseband, such as a white space frequency band. In the transmission path, a spectrum virtualization layer maps a plurality of frequency components derived from a transmission symbol produced by a physical layer protocol to sub-carriers of the allocated physical frequency band. The spectrum virtualization layer then outputs a time-domain signal derived from the mapped frequency components. In the receive path, a time-domain signal received on the physical baseband is reshaped by the virtual spectrum layer in order to recompose a time-domain symbol in the virtual baseband.