Abstract:
A method for measuring a distance between a first device and a second device, the method may include playing, by a first sound output unit, a first correlation tone; receiving, by a first sound sensing unit, the first correlation tone; detecting a start point of a reception of the first correlation tone; receiving, by the first sound sensing unit, a second correlation tone; wherein the second correlation tone is played by a second sound output unit in response to a reception, by a second sound sensing unit, of the first correlation tone; detecting a start point of a reception of the second correlation tone; receiving, by the first sound sensing unit, information about a processing time of the second device; calculating, by a first processing unit, a timing difference between (i) the start point of the reception of the second correlation tone, and (ii) the start point of the reception of the first correlation tone; and determining the distance between the first device and the second device based on a difference between the timing difference and the processing time of the second device; wherein the first processing unit, the first sound sensing unit and the first sound output unit belong to the first device; and wherein the second sound sending unit and the second sound output unit belong to the second device.
Abstract:
The invention describes a novel system for measuring short distances using the propagation time of radio signals between at least one interrogation unit and a transponder, whereby a disturbance of the transponder's response signal by its own request signal is excluded by means of a highly precise delay of the request in the transponder. The delay is realized with quartz accuracy and the necessary precision in that it takes place in a digital or analog register chain, whose register clock is kept phase synchronous with the interrogation signal, that a variable delay of the interrogation signal takes place in the interrogation unit and that this delay is adjusted by one register clock period at the synchronous time preferably by means of a binary search by means of the recognizable jump of the total running time-round trip.
Abstract:
A system and method are provided. The system includes a data reader having a processor for performing a signal frequency analysis, an ultrasound transmitter for transmitting ultrasound signals, and an ultrasound receiver for receiving reflected ultrasound signals. The system further includes a movable reflector for receiving the ultrasound signals and reflecting the ultrasounds signals back to the receiver (a) as the reflected ultrasound signals without modulation when the reflector is stationary and (b) as the reflected ultrasound signals with modulation when the reflector is mobile. The system also includes a chip for storing a specification of motion states for the reflector. The processor performs the signal frequency analysis to detect a presence or an absence of modulated frequency components in a received ultrasound signal and outputs a first value or a second value respectively depending upon whether the presence or the absence of the modulated frequency components is detected.
Abstract:
Devices and methods for aiding a large area search for submerged objects such as aircraft. A searcher transmits interrogation signals to be received by a device at the target object. The interrogation signals have a long range relative to that of returned signals. The target device responds with a ping signal modified to be more easily found by means of information contained in the interrogation signal. The information may be inherent in the nature of the received signal or data encoded and embedded by the searching device. The target device may use a microprocessor to do complex operations using the information from the interrogation signal and other information. Detection of a weak ping is facilitated by such means as being beamed in the direction of the interrogation, arriving at a predictable time, or having parameters adapted to values requested by the searcher.
Abstract:
A system is disclosed for tracking receptacles serviced by a service vehicle. The system may have a locating device located onboard the at least one service vehicle and configured to generate a location signal indicative of a location of the at least one service vehicle, a receptacle sensor located onboard the at least one service vehicle and configured to generate an identity signal indicative of an identity of a receptacle in a vicinity of the at least one service vehicle, and a display. The system may also have at least one controller in communication with the locating device, the sensor, and the display. The at least one controller may be configured to show on the display an icon representing the receptacle overlaid on a map based on the location and identification signals.
Abstract:
A plurality of individual toys, at least a first one of which generates acoustic signals and at least a second one of which receives acoustic signals. When the second toy receives acoustic signals from the first toy, it responds, for example, by generating a sound and/or controlling its motion. In a preferred embodiment of the invention, the toys flock and/or form a procession of toys which follow a leader toy, for example a mother goose and a plurality of following and preferably quacking goslings.
Abstract:
Systems and methods for indicating the presence of a mobile device within a passenger cabin are provided. A method for indicating the presence of a mobile device within a passenger cabin of a vehicle includes linking a vehicle computing device with the mobile device, determining whether a vehicle ignition is off and whether a vehicle lock has been actuated. The method further includes generating an audible mobile device search signal that is played through a cabin and waiting to receive a response from the mobile device as to whether the mobile device detected the audible mobile device search signal. The method further includes determining whether the mobile device is within the passenger cabin based on whether a response was received from the mobile device and generating a first audible indication when the mobile device is within the passenger cabin.
Abstract:
A distance measuring apparatus and a distance measuring method are provided. The distance measuring apparatus includes a GPS module, an ultrasound transceiver module and a control module. The GPS module is configured to generate a pulse signal. The ultrasound transceiver module is configured to generate and transmit a first ultrasound signal and receive a second ultrasound signal transmitted from an object. When the control module receives the pulse signal, the control module controls the ultrasound transceiver module to generate and transmit the first ultrasound signal, and determines whether the ultrasound transceiver module receives the second ultrasound signal within a first interval. When the ultrasound transceiver module receives the second ultrasound signal within the first interval, the control module determines a distance between the distance measuring apparatus and the object according to a time difference.
Abstract:
A rugged hand-held mobile computing device for a forester to collect and use dendrometric data from trees and tree stands is claimed. The device includes a processor which operates in connection with a memory, a user interface, a GPS receiver, a sound sensor capable of emitting an ultra-sonic pulse and a computer readable code embodied on the memory. The device communicates with a transponder by way of the ultra-sonic pulse emitted by the sound sensor. The transponder also emits an ultra-sonic pulse back to device. The device calculates the distance traveled based on the knowledge of the speed of the pulses. The memory, which also includes basic mapping software, uses the data to update a map in real time with the location of the trees and other information collected.
Abstract:
Electro-mechanical transducers are used to actively cloak a targeted object in a way that absorbs incoming waves without reflection, sends them out the opposite side of the target and returns the wave without leaving a shadow behind the target. The present invention pertains to an improvement in the cloaking of an object without requiring the use of special materials for the object itself and allows the use of SONAR and other possible transducer systems that would be covered and rendered ineffective with passive cloaking materials. Other means are also provided for extending the bandwidth as well as increasing the efficiency for cloaking or other transducers.