Abstract:
Cleaning compositions that include a non-functionalized alkyl polyglycoside, a nonionic surfactant system, and water. In certain embodiments, the cleaning compositions are substantially free of alkyl phenol ethoxylates. Additionally, some embodiments of the invention are substantially free of butyl cellosolve. The cleaning composition is capable of removing both proteinaceous food soils and hydrocarbon-based oily soils. The cleaning compositions include a biorenewable, environmentally friendly alternative to nonyl phenol ethoxylates and exhibit superior cleaning of food soils.
Abstract:
The present invention is directed to wetting agent compositions and methods for making and using the wetting agent compositions. The compositions of the invention include a sheeting agent, a defoaming agent, and an association disruption agent. The wetting agent compositions of the present invention result in a faster draining/drying time on most substrates compared to conventional wetting agents. The wetting agent compositions of the present invention are especially suitable for use on plastic substrates.
Abstract:
The invention meets the needs above by providing a surfactant system, mixture or blend that can be used as a part of a soaking composition. The surfactant system is capable of forming emulsions with, and thus removing, oily and greasy stains. In a preferred embodiment the surfactant compositions of the invention can remove non-trans fat and fatty acid stains. The invention involves foaming soaking compositions that have some or part of the anionic surfactant present in the same replaced with an extended chain anionic surfactant.
Abstract:
A solid rinse aid composition and methods of making and using the same are described. Applicants have surprisingly found that the crystal modifier sodium xylene sulfonate (short chain alkyl benzene or alkyl naphthalene sulfonates) at higher percentage can act as a solidification agent. The solid rinse aid composition generally includes a short chain alkyl benzene or alkyl naphthalene sulfonates solidification agent and an effective amount of a surfactant which can include a sheeting agent component, defoamer component and/or association disruption agent. The solid rinse aid composition may be phosphate-free, aminocarboxylate-free, and GRAS if desired.
Abstract:
Liquid stable enzyme compositions and methods of employing the same for cleaning, including warewashing and dishwashing, are disclosed. The stable enzyme compositions preferably employ an amphoteric surfactant stabilizing agent, such as disodium camphodiacetate (CADA), to stabilize a mixture of traditionally unstable enzymes, such as proteases and lipases.
Abstract:
Rinse aids and sanitizing rinse aids for various applications, including institutional machine sanitizing are disclosed. In particular, concentrated and use compositions, such as concentrated liquid rinse aid compositions, employing a synergistic combination of a quaternary ammonium compound and anionic surfactant are disclosed. In particular, the present invention provides compositions and methods of a sanitizing rinse providing desired antimicrobial efficacy against a broad spectrum of gram negative microbes, suitable foaming profiles, and beneficial applications of use of the same, including low temperature sanitizing rinse are provided.
Abstract:
The present invention is directed to rinse aid compositions and methods for making and using the rinse aid compositions. The compositions of the invention include a sheeting agent, a defoaming agent, and an association disruption agent. The rinse aid compositions of the present invention result in a faster draining/drying time on most substrates compared to conventional rinse aids. The rinse aid compositions of the present invention are especially suitable for use on plastic substrates.
Abstract:
The present invention is directed to rinse aid compositions and methods for making and using the rinse aid compositions. The compositions of the invention include a sheeting agent, a defoaming agent, and an association disruption agent. The rinse aid compositions of the present invention result in a faster draining/drying time on most substrates compared to conventional rinse aids. The rinse aid compositions of the present invention are especially suitable for use on plastic substrates.
Abstract:
The invention discloses synergistic combinations of surfactants blends and cleaning composition. In certain embodiments a surfactant system is disclosed which includes extended anionic surfactants, linker surfactants, and a multiply charged cation component. This system forms emulsions with, and can remove greasy and oily stains, even those comprised of non-trans fats. The compositions may be used alone, as a pre-spotter or other pre-treatment or as a part of a soft surface or hard surface cleaning composition.
Abstract:
The present invention is directed to rinse aid compositions and methods for making and using the rinse aid compositions. The compositions of the invention include a sheeting agent, a defoaming agent, and an association disruption agent. The rinse aid compositions of the present invention result in a faster draining/drying time on most substrates compared to conventional rinse aids. The rinse aid compositions of the present invention are especially suitable for use on plastic substrates.