Abstract:
An embodiment method for grant-free resource configuration comprises configuring a first type of grant-free resource, wherein the first type of grant-free resource is cell-specific and is configured using broadcast signaling, and wherein the first type of grant-free resource is accessible to a UE without further configuration; and configuring a second type of grant-free resource, wherein the second type of grant-free resource is UE-specific and is configured using a combination of broadcast signaling and unicast/multicast signaling, and wherein the second type of grant-free resource is accessible to a UE only after the unicast/multicast configuration.
Abstract:
A grant-free transmission mode may be used to communicate small traffic transmissions to reduce overhead and latency. The grant-free transmission mode may be used in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. Hence, the grant-free transmission mode allows mobile devices to make small traffic transmissions without waiting for uplink grant requests.
Abstract:
A grant-free transmission mode may be used to communicate small traffic transmissions to reduce overhead and latency. The grant-free transmission mode may be used in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. Hence, the grant-free transmission mode allows mobile devices to make small traffic transmissions without waiting for uplink grant requests.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
Different filtered-orthogonal frequency division multiplexing (f-OFDM) frame formats may be used to achieve the spectrum flexibility. F-OFDM waveforms are generated by applying a pulse shaping digital filter to an orthogonal frequency division multiplexed (OFDM) signal. Different frame formats may be used to carry different traffic types as well as to adapt to characteristics of the channel, transmitter, receiver, or serving cell. The different frame formats may utilize different sub-carrier (SC) spacings and/or cyclic prefix (CP) lengths. In some embodiments, the different frame formats also utilize different symbol durations and/or transmission time interval (TTI) lengths.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
In one embodiment, a method for adaptive transmission time intervals (TTIs) includes transmitting, by a communications controller to a user equipment (UE), a segment of a first TDD TTI configuration of a first TDD interval and a second TDD TTI configuration of the first TDD interval, where the first TDD TTI configuration has a first pattern, where the second TDD TTI configuration has a second pattern, where the first pattern is different than the second pattern, where the first TDD TTI configuration has a first uplink TTI segment and a first downlink TTI segment. The method also includes transmitting a first plurality of data on a first TTI in the first downlink TTI segment of the first TDD TTI configurations of the first TDD interval and receiving a second plurality of data on the first uplink segment of the first TDD TTI configuration of the first TDD interval.
Abstract:
Data heterogeneity has been shown to reduce the convergence speed and model accuracy in existing federated learning (FL) and distributed learning (DL) based artificial intelligence or machine learning (AI/ML) model training processes. In some embodiments, a group of devices participating in an FL or DL based AI/ML model training process is divided into clusters, e.g., based on similarities in their data class distributions, and each device is configured with a cascaded AI/ML model that includes a first AI/ML sub-model and a second AI/ML sub-model that are cascaded. For each device, one of the cascaded sub-models is a common AI/ML sub-model that is common to all devices in the group, and the other sub-model is a cluster-specific AI/ML sub-model that is common to the cluster that the device has been assigned to within the group of devices. A multi-stage training process for the cascaded AI/ML model is also provided.
Abstract:
The power requirements of user equipments (UEs) are expected to increase as their capabilities increase. Some power saving methods have previously been proposed, but are limited by the radio resource control (RRC) protocol and do not address the power consumption associated with having to transition between different RRC states. In some embodiments described herein, there are not different RRC states, but instead a single RRC state. Within that single RRC state, there are different modes of operation, e.g. a default low power operation mode and an enhanced power operation mode. In some embodiments, the UE switches from the default operation mode to the enhanced operation mode on an on-demand basis (e.g. based on the communication capability required by the UE), and then returns back to the default operation mode.
Abstract:
A method for operating a user equipment (UE) includes determining a first operating state in accordance with a first message traffic generated by a non-session based application executing in the UE, setting a state machine in the UE to the first operating state, and transmitting a first message in accordance with the state machine.