摘要:
A moving robot and moving object detecting method and medium thereof is disclosed. The moving object detecting method includes transforming an omni-directional image captured in the moving robot to a panoramic image, comparing the panoramic image with a previous panoramic image and estimating a movement region of the moving object based on the comparison, and recognizing that a movement of the moving object exist in the estimated movement region when the area of the estimated movement region exceeds the reference area.
摘要:
An omni-directional stereo camera and a control method thereof. The omni-directional stereo camera includes two or more omni-directional cameras, and a supporting member installed within a shooting range between the omni-directional cameras to interconnect the omni-directional cameras and including compensation patterns formed at the surfaces.
摘要:
A method to control medical equipment that moves along at least one axis or performs joint movement is provided. While the medical equipment is passively moved as operated by the operator, the operation intention of the operator is determined using a force sensor, a torque sensor, or the like, and motor control is performed taking into consideration the determined operation intention to reduce load (or drive power) of the operator. To accomplish this, the method determines a direction and magnitude of force that an operator applies to the medical equipment to move the medical equipment and generates auxiliary force having a magnitude proportional to the force applied by the operator and having the same direction as the direction of the force applied by the operator such that the medical equipment may be moved.
摘要:
A robot and a method for creating a robot path. The method for planning the robot path includes generating a depth map including a plurality of cells by measuring a distance to an object, dividing a boundary among the plurality of cells into a plurality of partitions according to individual depth values of the cells, and extracting a single closed loop formed by the divided boundary, obtaining a position and shape of the object located at a first time through the extracted single closed loop, calculating a probability that the object is located at a second time after t seconds on the basis of the obtained position and shape of the object located at the first time, and creating a moving path simultaneously while avoiding the object according to the calculated probability, thereby creating an optimum path without colliding with the object.
摘要:
A robot and a method of controlling the same are disclosed. The robot derives a maximum dynamic performance capability using a specification of an actuator of the robot. The control method includes forming a first bell-shaped velocity profile in response to a start time and an end time of a motion of the robot, calculating a value of an objective function having a limited condition according to the bell-shaped velocity profile, and driving a joint in response to a second bell-shaped velocity profile that minimizes the objective function having the limited condition.
摘要:
A face recognition apparatus and method. Sub-images having different face sizes are generated using a received face image of a person to be identified. Feature vectors of the sub-images are generated and observation nodes are generated based on the feature vectors. The observation nodes corresponding to the sub-images are compared with stored reference nodes of sub-images of a registered person on a face size by face size basis to calculate similarity scores between the observation nodes and the reference nodes. State nodes are generated based on the respective similarity scores of the face sizes, the observation and state nodes are compared, and the state nodes are compared to perform face recognition. This improves face recognition performance and face recognition speed. Face recognition performance robust to facial expression variation or type information is achieved by performing I-shaped curvature Gabor filtering on a plurality of sub-images based on the eye distance.
摘要:
Disclosed herein are a markerless augmented reality system and method for extracting feature points within an image and providing augmented reality using a projective invariant of the feature points. The feature points are tracked in two images photographed while varying the position of an image unit, a set of feature points satisfying a plane projective invariant is obtained from the feature points, and augmented reality is provided based on the set of feature points. Accordingly, since the set of feature points satisfies the plane projective invariant even when the image unit is moved and functions as a marker, a separate marker is unnecessary. In addition, since augmented reality is provided based on the set of feature points, a total computation amount is decreased and augmented reality is more efficiently provided.
摘要:
An object recognition system including an image data storage unit to store a captured image, a feature extraction unit to extract an image having a predetermined rotational component among rotational components of the image stored in the image data storage unit and to extract feature vectors based on the extracted image, a database unit to store object information, a recognition unit to determine whether an object corresponding to the captured image is present in the database unit through comparison between the feature vectors extracted by the feature extraction unit and the object information stored in the database unit and to recognize information on the object stored in the database unit based on determination as to whether the object corresponding to the captured image is present in the database unit, and a system administration unit to receive the information on the object recognized by the recognition unit.
摘要:
A system and method for extracting 3D coordinates, the method includes obtaining, by a stereoscopic image photographing unit, two images of a target object, and obtaining 3D coordinates of the object on the basis of coordinates of each pixel of the two images, measuring, by a Time of Flight (TOF) sensor unit, a value of a distance to the object, and obtaining 3D coordinates of the object on the basis of the measured distance value, mapping pixel coordinates of each image to the 3D coordinates obtained through the TOF sensor unit, and calibrating the mapped result, determining whether each set of pixel coordinates and the distance value to the object measured through the TOF sensor unit are present, calculating a disparity value on the basis of the distance value or the pixel coordinates, and calculating 3D coordinates of the object on the basis of the calculated disparity value.
摘要:
An image-based localization feature point registration apparatus includes a camera to capture an image, a feature point extractor to extract a feature point from the captured image, a calculator to calculate depth information about the feature point according to whether the feature point is one of two-dimensional (2D) and a three-dimensional (3D) corner, and a feature point register to register 3D coordinates of the feature point based on the depth information about the feature point and image coordinates of the feature point.