Abstract:
Spectrum reservation circuitry for use in a source electronic device (e.g. eNB or UE) of a wireless communication system is provided. The availability of an unlicensed carrier for use is checked by control circuitry of the source device and a License Assisted Access (LAA) Request to Send signal is transmitted on an unlicensed carrier if it is determined to be available for use. Receive circuitry is configured to receive on an unlicensed carrier, from a destination electronic device an LAA Clear to Send signal in response, depending upon availability of the unlicensed channel at the destination. Corresponding spectrum reservation circuitry is provided for use in a destination device, comprising transmit circuitry to transmit the LAA Clear to Send signal. A corresponding computer program product is provided on a non-transitory medium.
Abstract:
Disclosed in some examples are methods, systems, and machine readable mediums which reuse existing LTE functionality to rapidly signal UEs on the availability of a LTE-U cell. Using these techniques the on/off operation can be in the order of a few milliseconds (ms). Several techniques are disclosed herein, including use of component carrier (CC) specific Discontinuous Reception (DRX) signaling, PDCCH signaling, DL assignment based signaling, Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH) signaling, Beacon signaling, and the like.
Abstract:
A mobile communication device includes a table component, a table selection component, a control information component, and a communication component. The table component is configured to maintain two or more tables each having entries for a plurality of available modulation schemes. The table selection component is configured to select a selected table from one of the default table and the secondary table based on one or more of RRC layer signaling and MAC layer signaling and further based based on a control information format for control information received from the eNB. The control information component is configured to receive control information indicating a modulation and coding scheme from the selected table, and the communication component is configured to receive and process a communication from the eNB based on the modulation and coding scheme from the selected table.
Abstract:
Systems, apparatus, user equipment (UE), evolved node B (eNB), computer readable media, and methods are described for multi-carrier listen before talk operations. In various embodiments, a transmitting device may assign one or more primary carriers to perform listen before talk (LBT) operations, with non-primary carriers performing a channel sensing operation at the end of the LBT operations of at least one primary channel. In various embodiments, the LBT operations at the primary carriers may use a shared random countdown number or an independent random countdown.
Abstract:
Systems, apparatus, user equipment (UE), evolved node B (eNB), computer readable media, and methods are described for multi-carrier listen before talk operations. In various embodiments, a transmitting device may assign one or more primary carriers to perform listen before talk (LBT) operations, with non-primary carriers performing a channel sensing operation at the end of the LBT operations of at least one primary channel. In various embodiments, the LBT operations at the primary carriers may use a shared random countdown number or an independent random countdown.
Abstract:
Systems, apparatus, user equipment (UE), evolved node B (eNB), computer readable media, and methods are described for uplink grants and hybrid automatic repeat requests (HARQ) in communications systems. Some embodiments operate to determine that an unlicensed first channel is idle based on a sensing of the first channel for a first period of time. Such an embodiment may then generate a reservation signal on the first channel and an uplink grant for a first user equipment (UE). After the uplink grant is communicated, the embodiment senses the first channel to detect a physical uplink shared channel (PUSCH) transmission associated with the uplink grant. A HARQ acknowledgment or negative acknowledgement may be sent in various embodiments following the sensing.
Abstract:
Embodiments of a User Equipment (UE), Evolved Node-B (eNB) and methods for communication are generally described herein. The UE may receive downlink control information (DCI) that schedules a transport block (TB) that includes multiple code blocks. The UE may determine a transport block size (TBS) based on the DCI. The UE may attempt to decode the code blocks. The UE may, if the TBS is greater than a predetermined threshold: bundle the code blocks into code block groups for hybrid automatic repeat request (HARQ) acknowledgement; and transmit a HARQ bit per code block group. The UE may, if the TBS is less than or equal to the threshold, transmit a HARQ bit that indicates whether a decode failure has occurred for at least one of the code blocks of the TB.
Abstract:
Disclosed in some examples are systems, machine-readable media, methods, and cellular wireless devices which implement a Listen-Before-Talk (LBT) access scheme for a device operating according to a cellular wireless protocol in an unlicensed channel. A cellular wireless device may utilize the cellular wireless protocol in the unlicensed channel after the LBT access scheme has determined that a channel (a defined range of frequencies) in the unlicensed channel is idle for a particular period of time.
Abstract:
Embodiments of the present disclosure describe apparatuses and methods for determining a listen before talk (LBT) protocol to be used in a long term evolution unlicensed spectrum environment, wherein the LBT protocol is based at least in part on a transmitter-based LBT protocol or a receiver-aided LBT protocol. Other embodiments may be described and/or claimed.
Abstract:
Techniques for communication of a partial subframe and properties related to the partial subframe of a plurality of subframes in licensed assisted access (LAA) for an unlicensed frequency band are discussed. A network device (e.g., an evolved NodeB, or other cell network device) can generate a listen before talk (LBT) protocol in order to determine whether an unlicensed carrier of a secondary cell device is idle or busy. The evolved Node B (eNB) can communicate starting or ending partial subframes in a downlink transmission, and a user equipment (UE) can process partial subframes based on the communications and a scheduling policy.