Abstract:
Systems and methods for designing, using, and/or implementing hybrid communication networks are described. In various embodiments, these systems and methods may be applicable to power line communications (PLC). For example, one or more of the techniques disclosed herein may include methods to coordinate medium-to-low voltage (MV-LV) and low-to-low voltage (LV-LV) PLC networks when the MV-LV network operates in a frequency subband mode and the LV-LV network operates in wideband mode (i.e., hybrid communications). In some cases, MV routers and LV routers may have different profiles. For instance, MV-LV communications may be performed using MAC superframe structures, and first-level LV to lower-level LV communications may take place using a beacon mode. Lower layer LV nodes may communicate using non-beacon modes. Also, initial scanning procedures may encourage first-to-second -level LV device communications rather than MV-to-first-level LV connections.
Abstract:
Systems and methods for building, transmitting, and receiving robust protocol data units (PDUs) in power line communications (PLC) are described. In some embodiments, a method may include receiving a PDU, applying bit-level repetition to at least a portion of the PDU to create a repeated portion, block interleaving two or more symbols corresponding to the repeated portion to create a block interleaved portion, inserting pilot tones in the block interleaved portion, and modulating each tone in the block interleaved portion with respect to a nearest one of the inserted pilot tones to create a robust PDU. In some implementations, the robust PDU may include a first header portion carrying information encoded using a first version of a PLC protocol (e.g., a legacy standard) and a second header portion carrying information encoded using a second version of the PLC protocol (e.g., a newer version of the same standard).
Abstract:
Systems and methods for building, transmitting, and receiving frame structures in power line communications (PLC) are described. Various techniques described herein provide a preamble design using one or more symbols based on a chirp signal that yields a low peak-to-average power ratio (PAPR). According to some techniques, the preamble may be constructed with one or more different types and/or number of symbols configured to identify a PLC domain operating in close physical proximity to another PLC domain. According to other techniques, one or more preamble symbols may be interspersed within a header portion of a PLC frame to facilitate estimation of a frame boundary and/or sampling frequency offset, for example, in the presence of impulsive noise. According to yet other techniques, a PLC detector may be capable of receiving and decoding two or more types of PLC frames (e.g., using different PLC standards).
Abstract:
Systems and methods for facilitating power line communications are described. In some embodiments, a PLC device may detect the availability of a first frequency band as well the availability of a combination of a second frequency band with a third frequency band. The PLC device may then communicate with another PLC device using a frequency band selected as (a) at least a portion of a combination of the first, second, and third frequency bands, (b) at least a portion of the first frequency band, or (c) at least a portion of the combination of the second with third frequency bands. The PLC device may further transmit a message to a higher-level PLC apparatus (e.g., a domain master) over the power line using a device-based access mode, receive an instruction to switch to a domain-based access mode, and thereafter communicate with another PLC device using the domain-based access mode.
Abstract:
The present invention relates to a biomarker for diagnosing lung cancer and colorectal cancer containing glutaredoxin 3 as an active ingredient, and a kit for diagnosing lung cancer and colorectal cancer using the same biomarker. Glutaredoxin 3 of the present invention is over-expressed in lung cancer tissue and colorectal cancer tissue, which enables early prediction of diagnosis or prognosis of lung cancer and colorectal cancer. Thus, glutaredoxin 3 can be helpfully used as a biomarker for diagnosing lung cancer and colorectal cancer.
Abstract:
Embodiments of the invention provide an interleaver design and header fields for ITU-T G.hnem. The header may comprise two parts that are separately encoded. A common header segment is encoded alone, and an embedded header segment is encoded with payload data. The interleaver operates on blocks having a size based upon a total number of input bits in an FEC codeword block, a total number of bits loaded on symbols that span a half mains cycle, or a maximum fragment size of 3072 bits. The blocks may be repeated before interleaving. Each block and its repetitions may be interleaved together, such as for header data, or each block and repetition may be interleaved separately, such as for payload data. Cyclic padding may be used on each block to create an integer number of symbols for transmission.
Abstract:
A device for communicating digital data over power lines includes a power line interface for transmitting data over at least one band of frequencies. An orthogonal frequency division multiplexing (OFDM) modulation unit generates OFDM symbols using a set of tones for the frequency band. A preamble generation unit generates preamble sequences for the frequency band by using the set of tones used by the OFDM modulation unit. The tones used by the preamble generation unit have a constant magnitude, and a set of phases obtained by quantizing to a small alphabet the phase of a set of tones obtained by taking an IFFT of a portion of a preamble used by a non-interoperable powerline access device. The device may transmit on two or more bands using a sampling frequency clock, wherein a lower band clock frequency is equal to or an integer divisor of a higher band clock frequency.
Abstract:
An apparatus for generating a precoding matrix codebook includes a matrix group generator to generate a first group of unitary matrices based on a vector-based codebook for precoding of a multiple input multiple output (MIMO) communication scheme; a matrix group extender to extend the first group of unitary matrices to generate a second group of unitary matrices; and a matrix group selector to select a group of columns corresponding to a communication rank from each of the unitary matrices that are elements of the second group so that the columns are optimized based on a distance between the columns corresponding to the communication rank.