Abstract:
A method for manufacturing a cord yarn, which has at least one filament strand, includes applying a first twist so that a K1 value has a value of 0.1837763/D1n or below, applying a second twist so that a K2 value has a value between 0.0166819/D2n and 0.3183099/D2n, and applying a third twist so that a K3 value has a value between 0.0278485/D3 and 0.2968288/D3, wherein the twists are applied so that the cord yarn has roundness of 50% or above, and when the filament is a multi filament, so that porosity between strands of the cord yarn is less than 40%.
Abstract:
A method of powerline communications including a first node and at least a second node on a powerline communications (PLC) channel in a PLC network. The first node sends a physical layer (PHY) data frame on the PLC channel including a preamble, a PHY header, a MAC header and a MAC payload. The MAC header includes a Cyclic Redundancy Check (CRC) field (MH-CRC field). The second node receives the data frame, parses the MAC header to reach the MH-CRC field, and performs CRC verification using the MH-CRC field to verify the MAC header. If the CRC verification is successful, (i) the second node parses another portion of the MAC header to identify a destination address of the data frame and (ii) to determine whether the data frame is intended for the second node from the destination address.
Abstract:
Systems and methods for designing, using, and/or implementing communications in beacon-enabled networks are described. In various implementations, these systems and methods may be applicable to power line communications (PLC). For example, a method may include identifying one of a plurality of orthogonal superframes. The identified superframe may include beacon slots and contention access period (CAP) slots. The beacon slots may follow a sequence of two or more frequency subbands, and the CAP slots may follow the same sequence of two or more frequency subbands. Also, the sequence of two or more frequency subbands may be distinct from other sequences of two or more frequency subbands followed by other beacon slots and CAP slots within others of the plurality of available superframes. The method may then include communicating with another device using the identified superframe.
Abstract:
A coordinated multipoint transmitter is for use with a network MIMO super-cell and includes a coordination unit configured to provide joint link processing to coordinate a multipoint transmission corresponding to a set of transmission points. Additionally, the coordinated multipoint transmitter also includes a transmission unit configured to transmit the multipoint transmission using the set of transmission points. Additionally, a coordinated transmission receiver is for use with a network MIMO super-cell and includes a reception unit configured to receive a multipoint transmission corresponding to a set of transmission points. The coordinated transmission receiver also includes a processing unit configured to process the multipoint transmission from the set of transmission points.
Abstract:
A system and method for communicating in a power line communications (PLC) network using Orthogonal Frequency-Division Multiplexing (OFDM) symbols. Pilot tones are carried by the OFDM symbols according to a predetermined pattern. A receiving device identifies pilot tones on each frequency. A group of previously received pilot tones on a selected frequency are filtered to generate a channel estimate for a tone on the selected frequency in a new symbol. The channel estimates on two different frequencies within an OFDM symbol may be interpolated to determine a channel estimate for a third frequency with the OFDM symbol.
Abstract:
Embodiments of the invention provide time-domain link adaptation in power line communications. In one embodiment, the cyclic prefix length and position is adjusted with an OFDM symbol to overlap a periodic impulse noise pulse, thereby allowing the data carried in the symbol to be detected at a receiver. The cyclic prefix may be adjusted to provide a pattern that yields an integer number of OFDM symbols in one zero crossing period. The data rate used for the symbols overlapping the zero-crossing period may be zero or very low. A high data rate may be used for symbols outside the zero-crossing period because those symbols will not be affected by the periodic impulse noise.
Abstract:
Coupling and interface circuits for powerline modems are disclosed. A powerline modem may be coupled to a low voltage (LV) line or a medium voltage (MV) line using a circuit that is designed to compensate for signal attenuation and loss that is created by the a LV/MV transformer and/or a MV coupler. In one embodiment, separate coupling transformers may be used by the modem for reception and transmission. In other embodiments, a capacitance is switched on the transmission line before the modem transmits to lower the line impedance.
Abstract:
Embodiments provide a method for determining the number of parity bytes that are added by a Reed-Solomon encoder. The number of parity bytes are equivalent to the error correcting capability of the Reed-Solomon code. The number of parity bytes is based on the payload length or the information block size used in the Reed-Solomon encoder. Other factors may also be used to make this choice.
Abstract:
A coordinated multipoint transmitter is for use with a network MIMO super-cell and includes a coordination unit configured to provide joint link processing to coordinate a multipoint transmission corresponding to a set of transmission points. Additionally, the coordinated multipoint transmitter also includes a transmission unit configured to transmit the multipoint transmission using the set of transmission points. Additionally, a coordinated transmission receiver is for use with a network MIMO super-cell and includes a reception unit configured to receive a multipoint transmission corresponding to a set of transmission points. The coordinated transmission receiver also includes a processing unit configured to process the multipoint transmission from the set of transmission points.