Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
A display apparatus (DSP1) includes: a flexible substrate (10) configured to include a region (DA1) and a region (DA2) on its surface; a liquid crystal film (LQ); and a photolytic alignment film configured to be in contact with the liquid crystal film (LQ). A material of the alignment film (AL1) in the region (DA1) is different from a material of the alignment film (AL2) in the region (DA2).
Abstract:
A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
A liquid crystal display device includes a TFT substrate and a counter substrate and a liquid crystal layer sandwiched therebetween. A scanning line, a video signal line, a thin film transistor connected to the scanning line and the video signal line, a pixel electrode connected to the thin film transistor, and a counter electrode are formed on the TFT substrate, and a columnar spacer formed on the counter substrate. The pixel and counter electrodes are transparent, and the liquid crystal layer is controlled by an electric field generated between the pixel and counter electrodes. The counter electrode contacts with a metal line having a first part which is extended in parallel with the scanning line and a second part which is extended in parallel with the video signal line, a width of the first part of the metal line being narrower than a width of the scanning line.
Abstract:
The present invention prevents the shaving of an alignment film caused by a columnar spacer in a liquid crystal display device of an IPS method using photo-alignment. A plinth higher than a pixel electrode is formed at a part where a columnar spacer formed over a counter substrate touches a TFT substrate. When an alignment film of a double-layered structure is applied over the pixel electrode and the plinth, the thickness of the alignment film over the plinth reduces by a leveling effect. When photo-alignment is applied in the state, a photodegraded upper alignment film over the plinth disappears and a lower alignment film having a high mechanical strength remains. As a result, it is possible to prevent the shaving of the alignment film.
Abstract:
A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
A liquid crystal display device includes a TFT substrate and a counter substrate and a liquid crystal layer sandwiched therebetween. A scanning line, a video signal line, a thin film transistor connected to the scanning line and the video signal line, a pixel electrode connected to the thin film transistor, and a counter electrode are formed on the TFT substrate, and a columnar spacer formed on the counter substrate. The pixel and counter electrodes are transparent, and the liquid crystal layer is controlled by an electric field generated between the pixel and counter electrodes. The counter electrode contacts with a metal line having a first part which is extended in parallel with the scanning line and a second part which is extended in parallel with the video signal line a width of the first part of the metal line being narrower than a width of the scanning line.
Abstract:
A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
A liquid crystal display device includes a first substrate, a first alignment film formed over the first substrate, a second substrate, a second alignment film formed over the second substrate, a liquid crystal layer sandwiched between the first alignment film and the second alignment film, and a projecting portion formed over the second substrate. The first alignment film is a photo alignment film, and a thickness “d2” of the second alignment film over the projecting portion and a film thickness “d1” of a portion of the first alignment film facing the projecting portion satisfy formula (1) and (2): 0 nm
Abstract:
In a liquid crystal display device having an alignment film subjected to an optical alignment process, the frame area can be reduced while maintaining the reliability of the sealing portion. To achieve this, in the display area, the alignment process is performed with UV light on the alignment film, to form an area in which the alignment film is not formed in the opposing first and second sides, and to form an area in which the amount of UV light irradiation on the alignment film is one fourth or less of the display area in the opposing third and fourth sides. In the first and second sides, the sealing material overlaps the area in which the alignment film is not formed. In the third and fourth sides, the sealing material overlaps the area in which the amount of UV light irradiation is one fourth or less of the display area.