Abstract:
A circuit arrangement is provided, the circuit arrangement including a receiver configured to receive signal information from a sensor circuit; a discharge circuit configured to discharge a capacitance by providing a discharge pulse; and a modulation circuit configured to modulate a bit pattern onto the discharge pulse.
Abstract:
In accordance with an embodiment, a high-side switch device includes a semiconductor switch, a charge pump operable external clocking signal and an input for an external charge pump activation signal. The charge pump is configured to enable conductivity of the semiconductor switch in response to the external clocking signal and assertion of the external charge pump activation signal.
Abstract:
A predictive sensor readout is suitable for coupling to a sensor. The predictive sensor readout includes a sampling circuit, a predictor, and a preset circuit. The sampling circuit is configured to receive and over-sample previously digitized samples of signals previously input from the sensor. The predictor is coupled to the sampling circuit and is configured to receive the over-sampled digitized samples into a signal history and to generate a predicted input from the sensor based on the signal history. The preset circuit is coupled to the predictor and the sampling circuit and is configured to present the sampling circuit to receive the predicted input from the sensor prior to sampling an actual input from the sensor.
Abstract:
Some embodiments of the present disclosure relate to a sensor interface module. The sensor interface module includes a comparator having a first comparator input, a second comparator input, and a comparator output. A current- or voltage-control element has a control terminal coupled to the comparator output and also has an output configured to deliver a modulated current or modulated voltage signal to an output of the sensor interface module. A first feedback path couples the output of the current- or voltage-control element to the first comparator input. A summation element has a first summation input, a second summation input, and a summation output, wherein the summation output is coupled to the second comparator input. A supply voltage module provides a supply voltage signal to the first summation input. A second feedback path couples the comparator output to the second summation input.
Abstract:
A system including an encoder, multiple sensing elements and control logic. The encoder has a pole pitch and is configured to rotate in a direction of rotation. The multiple sensing elements are situated along the direction of rotation and span at least half the length of the pole pitch. The control logic is configured to receive signals from the multiple sensing elements based on the encoder in a static position and obtain a switching point based on the signals.
Abstract:
Embodiments relate to systems and methods for sensor self-diagnostics using multiple signal paths. In an embodiment, the sensors are magnetic field sensors, and the systems and/or methods are configured to meet or exceed relevant safety or other industry standards, such as SIL standards. For example, a monolithic integrated circuit sensor system implemented on a single semiconductor ship can include a first sensor device having a first signal path for a first sensor signal on a semiconductor chip; and a second sensor device having a second signal path for a second sensor signal on the semiconductor chip, the second signal path distinct from the first signal path, wherein a comparison of the first signal path signal and the second signal path signal provides a sensor system self-test.
Abstract:
An apparatus includes a sensor arrangement with a sensor chip. A magnetic field generator is configured to generate a secondary magnetic field opposing an external primary magnetic field at the sensor chip. The magnetic field generator protects the sensor arrangement against the external primary magnetic field.
Abstract:
A semiconductor device includes a first sensor element in a first branch of a Wheatstone bridge and a second sensor element in a second branch of the Wheatstone bridge. The semiconductor device includes a first reference element in the first branch and a second reference element in the second branch. The semiconductor device includes a circuit configured to switch the first sensor element to the second branch and the second sensor element to the first branch.
Abstract:
A method for measuring an angular position of a rotating shaft, the method including providing a magnetic field which rotates with the shaft about an axis of rotation, positioning an integrated circuit having first and second magnetic sensing bridges within the magnetic field at a radially off-center position from the axis of rotation, the first and second magnetic sensing bridges respectively providing first and second signals representative of first and second magnetic field directions, the integrated circuit having a set of adjustment parameters for modifying attributes of the first and second signals, modifying values of the set of adjustment parameters until errors in the first and second signals are substantially minimized, and determining an angular position of the shaft based on the first and second signals.
Abstract:
The invention is related to intelligent tire systems and methods. In one embodiment, an intelligent tire system (ITS) comprises a first sensor device, a second sensor device, a central control unit, and a transceiver. The first sensor device is mounted in a tire of a vehicle and comprises a radio frequency (RF) transmitter. The second sensor device is mounted in the tire and comprises an RF transceiver, the second sensor device adapted to receive a transmitter transmission from the first sensor device comprising first sensor data. The central control unit is mounted in the vehicle. The transceiver is mounted in the vehicle and is adapted to receive a transceiver transmission from the second sensor device comprising first sensor data and second sensor data and to transmit the transceiver transmission to the central control unit.