Abstract:
In a touch sensible display device, a first sensing unit is connected to a row sensor data line and outputs a first sensing signal according to a touch, and a second sensing unit is connected to a column sensor data line and outputs a second sensing signal according to the touch. A sensing signal processor alternately applies a reset voltage to the row sensor data line and the column sensor data line and generates a sensing data signal according to the first sensing signal and the second sensing signal, and a touch determiner processes a sensing data signal to generate touch information.
Abstract:
The present invention relates to a touch sensitive display device, the display device including a display panel unit, a sensing unit formed on the display panel unit, receiving a sensor control signal, and generating a sensor data signal based on a touch exerted on the display panel unit, an output unit generating a sensing signal based on the sensor data signal from the sensing unit, and a compensation unit adjusting the sensor control signal such that the sensing signal is bounded in a predetermined range.
Abstract:
A touch position detecting method, a device using the method, and a touch screen display device having the device are disclosed. A touch sensing unit senses a touch event and outputs a sensing data. A reference update unit updates a reference data with an n-th frame sensing data provided from the touch sensing unit, based on a predetermined update signal. A position detecting unit detects the touch position by using the reference data and an (n+i)-th frame sensing data from the touch sensing unit. Therefore, the touch position is easily detected by determining a difference between the reference data and the sensing data at a certain time.
Abstract:
A display device includes a plurality of first and second sensing data lines; a plurality of first and second sensors connected to the first and second sensing data lines, respectively; a plurality of first signal converters which compare a first sensing data signal with a first reference voltage and output a first sensing output signal; a plurality of second signal converters which compare a second sensing data signal with the first reference voltage and output a second sensing output signal; a first position signal output unit which outputs a predetermined bit of a first position signal; a second position signal output unit which outputs a predetermined bit of a second position signal; a signal output unit which outputs a digital sensing signal in series; and a contact determiner which determines a contact position of the first and second sensors.
Abstract:
A shift register and a display device having the shift register are provided. The shift register has a plurality of stages which sequentially generate output signals in synchronization with a plurality of clock signals. Each of the stages includes an input unit for receiving a scan start signal or an output signal from a previous stage and outputting the scan start signal or the output signal as a first voltage, a first unit for passing at least two clock signals, a second unit for outputting at least one of the at least two clock signals or a second voltage in response to an output signal from a next stage, and an output unit for generating an output signal synchronized with at least one of the at least two clock signals in response to the outputs of the input unit and the second unit.
Abstract:
An image display device includes a display surface through which input light is applied from an external object, a color filter having color pixels that are arranged to form a planar surface substantially parallel with the display surface, a substrate having light sensing portions each disposed to face corresponding one of the color pixels, in which the light sensing portion senses light provided through the corresponding color pixel, and a liquid crystal layer disposed between the color filter and the substrate. The substrate includes pixel portions arranged in a matrix form to display images. The light sensing portion includes switching transistors that are respectively controlled by the input light and a gate signal and respectively connected to sensing lines.
Abstract:
A display device includes a display panel, a plurality of pixels formed on the display panel, a plurality of sensing units formed on the display panel and generating sensor output signals in response to a touch exerted on the display panel, a sensing signal processor receiving and processing an analog sensor data signal originated from the sensor output signals to generate a digital sensor data signal, a first touch-determination unit detecting whether a touch exists based on the digital sensor data signal for a plurality of frames, and operating in a power saving mode, and a second touch-determination unit detecting whether and where a touch exists based on the digital sensor data signal for the plurality of frames, and operating in a normal mode. The display device includes hardwired logic units for detecting the touch, it detects the touch using the hardwired logic units in the power saving mode and converts the operation mode to the normal mode when the touch is detected, thus reducing power consumption.
Abstract:
An image display system includes a light pen to generate light to input data, and a display panel to display images in response to the light provided from the light pen. The display panel includes a first substrate on which pixel electrodes are formed, a second substrate on which a common electrode are formed, and a photo-sensor formed on the first substrate. The photo-sensor detects the light provided from the light pen to generate a light detect signal. The image display system also includes a driving module to provide new image data to the display panel to display new images in response to the light detect signal from the photo-sensor.
Abstract:
An LCD device includes a transmissive LCD panel assembly, a backlight assembly for supplying light to the LCD panel assembly, and a selective reflection film provided between the backlight assembly and the LCD panel assembly. A display region of the LCD has a low-resolution area and a high-resolution area, and a pixel formed in the low-resolution area that is larger than a pixel formed in the high-resolution area.
Abstract:
A liquid crystal display (“LCD”) includes: a first substrate; a sensor pad disposed on the first substrate; a second substrate which faces the first substrate; a sensor spacer and a supporting spacer disposed on the second substrate; and a supporting dielectric portion disposed between the supporting spacer and the first substrate. The sensor spacer is spaced apart from the sensor pad, and includes a sensor electrode disposed on a portion of the sensor spacer which faces the sensor pad. The supporting spacer is spaced apart from the first substrate, and the supporting dielectric portion uniformly maintains a cell gap between the first substrate and the second substrate.