摘要:
A SCM-PON using WDM includes: an OLT for transferring downstream data from an external service provider through downstream optical signals and transferring upstream data transferred through upstream optical signals to an outside; an ODN for distributing the downstream optical signals from the OLT and multiplexing the upstream optical signals to the OLT; and a plurality of ONUs for processing the downstream optical signals transferred from the OLT through the ODN and transferring upstream data of subscribers for the OLT through the upstream optical signals, wherein the optical signals between the OLT and the ONUs are divided into wavelength channels with different wavelengths and sub-carrier channels obtained by time-dividing the wavelength channels, and the upstream data and the downstream data are transferred through the sub-carrier channels.
摘要:
Provided is an electroluminescent display device having a negligibly small voltage drop of a cathode, no external light reflection, and high contrast and luminance. The electroluminescent display device includes a rear substrate, a first electrode layer formed above the rear substrate, a second electrode layer formed above the first electrode layer, the second electrode layer facing the first electrode layer, a light-emitting layer interposed between the first electrode layer and the second electrode layer, the light-emitting layer having at least an emission layer, a front substrate facing the rear substrate and contacting an upper surface of the second electrode layer, and a functional thin film formed between the second electrode layer and the front substrate, the functional thin film having a conductive material at least in a portion thereof contacting the second electrode layer.
摘要:
In a gate line driving circuit, a display device, a driving apparatus and a driving method, a shift register sequentially shifts and outputs a high level data in response to a carry signal. A level shifter level-shifts an externally provided first voltage based on the high level data. An output buffer buffers the level-shifted first voltage and outputs the buffered level-shifted first voltage to a delay. The delay delays the buffered level-shifted first voltage and outputs the delayed level-shifted first voltage to a gate line. Thus, the delay applied to output stages of the gate line driving circuit act to delay the gate signal, thereby preventing deterioration of display quality caused by a kickback voltage.
摘要:
An organic electroluminescent device and a method of preparing the same are provided. The organic electroluminescent device includes a sealing layer which is formed on a sealing substrate, and which includes a cohesion layer, a transparent polymer layer, and a transparent moisture absorption layer. Since the transparent moisture absorption layer of the organic electroluminescent device is provided to a sealing substrate using an attaching method, the organic electroluminescent device has an improved life span property due to a firm sealed structure and better light extraction efficiency due to the transparent moisture absorption layer below the sealing substrate.
摘要:
A flat panel display device. The device includes a plurality of self-luminant devices, each of which includes at least a light emitting layer, formed on every pixel, and a lens sheet having a plurality of condensing lenses that correspond to the self-luminant devices and direct the light emitted from the self-luminant devices toward a predetermined direction. A distance between the light emitting layer and an exterior portion of the condensing lens in the direction of propagation of the light is between 50 and 500 microns so as not to overlap images of neighboring sub-pixels, that are expanded by the condensing lenses. Therefore, a lowering of image sharpness that is caused by the condensing lenses can be prevented, while a light coupling efficiency and a brightness are improved.
摘要:
The present invention provides an ashing method using rapid heat transfer under high pressure. The present method, applicable to all photoresist ashing processes, can rapidly remove hardened photoresists without popping at the ashing step by baking high dose ion implanted silicon substrate on a hot plate, enhancing the ashing quantity, by drastically reducing the ashing process time, while allowing conventional equipments to be used further. The present method comprises an in situ baking step, wherein a silicon substrate is baked for a predetermined time period under a pressure of 10 Torr or more while it is placed on a hot plate; a vacuumizing step, wherein a stable vacuum status is achieved while the silicon substrate is placed on the hot plate; a gas processing step, wherein selected reaction gas is introduced into a reaction chamber; and an ashing step, wherein plasma is generated until almost all of the photoresists are removed.
摘要:
Semiconductor devices and methods of fabricating semiconductor devices are disclosed. A disclosed semiconductor device includes a silicon substrate, a source region and a drain region. A gate electrode is formed on the silicon substrate. Also, a metal silicide layer is formed on each of the gate electrode, the source region, and the drain region. The metal silicide layer has a thickness uniformity of about 1˜20%. A disclosed fabrication method includes forming a metal layer on a silicon substrate having a gate electrode, a source region, and a drain region; performing a plasma treatment on the metal layer; forming a protective layer on the metal layer; and heat treating the silicon substrate on which the protective layer is formed to thereby form a metal silicide layer. A gas that includes nitrogen is used as a plasma gas during the plasma treatment.
摘要:
A method of encapsulating an organic electroluminescent (EL) device. The method includes applying a first sealant to a portion of an encapsulation plate facing a substrate to define one selected from a plurality of organic EL devices formed on the substrate, each including a first electrode layer, organic layers, and a second electrode layer. A space produced by the encapsulation plate and the first sealant and having an open face is filled with a second sealant. The substrate and the encapsulation plate are bonded together by applying pressure. The first sealant and the second sealant are then cured. The substrate and the encapsulation plate are cut into a plurality of independent organic EL panels.
摘要:
An organic electroluminescent device and its method of manufacturing are provided. The organic electroluminescent device may include a rear substrate, an organic electroluminescent unit including a first electrode, an organic film, and a second electrode stacked on a surface of the rear substrate. It may also include a front substrate joined to the rear substrate to seal an internal space in which the organic electroluminescent unit is disposed. It may also include a porous oxide layer composed of a porous silica and a metal compound on a lower surface thereof. A device constructed according to the present invention may have excellent adsorption of moisture and oxygen, thereby increasing the life span of the device.
摘要:
An organic light-emitting display device including: a substrate; an organic emission unit that is formed on the substrate and includes a laminate of a first electrode, an organic emission layer, and a second electrode; at least one organic layer that is formed on the substrate; and at least one inorganic layer that is formed on the substrate, contacts the organic layer in a planar direction, and contacts an environmental element to surround at least one border of the environmental element.