摘要:
A display device includes a main display unit and a liquid crystal display cover coupled with the main display unit. The liquid crystal display cover is movable between open and closed positions with respect to the main display unit. The liquid crystal display cover includes a lower substrate, an upper substrate, and a liquid crystal layer. The lower substrate includes a plurality of first pixels thereon. The upper substrate faces the lower substrate and has a first common electrode thereon. The liquid crystal layer is between the lower substrate and the upper substrate.
摘要:
A liquid crystal display device includes a first substrate having a reflective region and a transmissive region, a second substrate corresponding to the first substrate, and a liquid crystal structure located between the first substrate and the second substrate, the liquid crystal structure including a first liquid crystal layer located in the reflective region and a second liquid crystal layer located in the transmissive region, wherein the first liquid crystal layer is configured to control movement of the second liquid crystal layer.
摘要:
An exemplary embodiment provides an electro phoretic display that includes a lower substrate, a first pixel electrode on the lower substrate, an electronic ink layer on the first pixel electrode. The electro phoretic display further includes a common electrode on the electronic ink layer, a liquid crystal layer implementing a color on the common electrode, a second pixel electrode on the liquid crystal layer, and an upper substrate on the second pixel electrode.
摘要:
A liquid crystal display device includes a first substrate having a reflective region and a transmissive region, a second substrate corresponding to the first substrate, and a liquid crystal structure located between the first substrate and the second substrate, the liquid crystal structure including a first liquid crystal layer located in the reflective region and a second liquid crystal layer located in the transmissive region, wherein the first liquid crystal layer is configured to control movement of the second liquid crystal layer.
摘要:
A liquid crystal display panel includes a liquid crystal display panel for displaying an image, and a viewing angle adjustment layer on the liquid crystal display panel. The viewing angle adjustment layer includes: a lower cutoff polarizing plate; a lower cutoff electrode on the lower cutoff polarizing plate; an upper cutoff polarizing plate facing the lower cutoff polarizing plate; an upper cutoff electrode on the upper cutoff polarizing plate; and a liquid crystal capsule layer between the lower cutoff electrode and the upper cutoff electrode. The liquid crystal capsule layer includes a plurality of liquid crystal capsules. A diameter of the liquid crystal capsules is between 50 nm and a shortest wavelength of visible light.
摘要:
An exemplary embodiment provides an electro phoretic display that includes a lower substrate, a first pixel electrode on the lower substrate, an electronic ink layer on the first pixel electrode. The electro phoretic display further includes a common electrode on the electronic ink layer, a liquid crystal layer implementing a color on the common electrode, a second pixel electrode on the liquid crystal layer, and an upper substrate on the second pixel electrode.
摘要:
A liquid crystal display includes: a first substrate; a gate line formed on the first substrate; a data line intersecting the gate line; a thin film transistor connected to the gate line and to the data line; a pixel electrode electrically connected to the thin firm transistor, including first and second sub-electrodes, and overlapping with a portion of the data line; a storage electrode line formed on the first substrate, disposed between the first and second sub-electrodes, and including an overlapped portion with the pixel electrode; a second substrate arranged facing the first substrate; a common electrode formed on the second substrate and including a cutout corresponding to the first and second sub-electrodes; and a liquid crystal layer formed between the common electrode and the pixel electrode.
摘要:
A reflective-transmissive liquid crystal display (LCD) device with an improved display quality is achieved by forming a reflective area and a transmissive area having a cell gap greater than greater than that of the reflective area. A liquid crystal layer is disposed in a liquid crystal cell between the first and second substrates. The liquid crystal molecules are normally aligned at an angle equal to greater than about 45° with respect to a line parallel to the first substrate. The LCD device operates in a normally black mode.
摘要:
A liquid crystal display panel includes a liquid crystal layer having a twist angle of ±10 degree. An upper polarizer is disposed over an upper substrate of the liquid crystal display panel, and includes an absorption axis forming at an angle of 47±10 degree in a clockwise direction with respect to a major axis. An upper λ/2 retardation film is disposed between the upper substrate and the upper polarizer, and includes Δnd1 of 260±10 nm and a slow axis forming at an angle of 166±10 degree in the clockwise direction with respect to the absorption axis. An upper λ/4 retardation film is disposed between the upper substrate and the upper λ/2 retardation film, and includes Δnd2 of 140±10 nm and a slow axis forming at an angle of 111±10 degree in the clockwise direction with respect to the absorption axis. Therefore, the optical condition of the optical film assembly is optimized to improve an image display quality.
摘要:
A liquid crystal display panel includes a liquid crystal layer having a twist angle of ±10 degree. An upper polarizer is disposed over an upper substrate of the liquid crystal display panel, and includes an absorption axis forming at an angle of 47±10 degree in a clockwise direction with respect to a major axis. An upper λ/2 retardation film is disposed between the upper substrate and the upper polarizer, and includes Δnd1 of 260±10 nm and a slow axis forming at an angle of 166±10 degree in the clockwise direction with respect to the absorption axis. An upper λ/4 retardation film is disposed between the upper substrate and the upper λ/2 retardation film, and includes Δnd2 of 140±10 nm and a slow axis forming at an angle of 111±10 degree in the clockwise direction with respect to the absorption axis. Therefore, the optical condition of the optical film assembly is optimized to improve an image display quality.