Abstract:
Provided is a monoclonal antibody against slightly oxidized LDL, which can play a role as an important tool in the research and development of oxidized LDL. Also provided are a kit for the simple detection of slightly oxidized LDL and a method for the simple detection of slightly oxidized LDL from the biological sample of a subject to be tested which use the monoclonal antibody. By means of ELISA (Enzyme-Linked Immunosorbent Assay) using the monoclonal antibody as the solid phase antibody and an anti-apolipoprotein B antibody as the detection antibody, the degree of reaction between a severely oxidized low-density lipoprotein and the monoclonal antibody is low in comparison to the degree of reaction between a slightly oxidized low-density lipoprotein and the monoclonal antibody, and the monoclonal antibody specifically reacts with an oxidized low-density lipoprotein.
Abstract:
Provided is a monoclonal antibody against slightly oxidized LDL, which can play a role as an important tool in the research and development of oxidized LDL. Also provided are a kit for the simple detection of slightly oxidized LDL and a method for the simple detection of slightly oxidized LDL from the biological sample of a subject to be tested which use the monoclonal antibody. By means of ELISA (Enzyme-Linked Immunosorbent Assay) using the monoclonal antibody as the solid phase antibody and an anti-apolipoprotein B antibody as the detection antibody, the degree of reaction between a severely oxidized low-density lipoprotein and the monoclonal antibody is low in comparison to the degree of reaction between a slightly oxidized low-density lipoprotein and the monoclonal antibody, and the monoclonal antibody specifically reacts with an oxidized low-density lipoprotein.
Abstract:
The optical switch is capable of supervising the performance of optical switching in standby channels, and includes: a collimator unit; an optical splitter; a light-gathering unit; and a rotatable mirror. The optical switch further includes: a mirror angle controlling unit which controls a reflection face angle of the rotatable mirror for each wavelength to switch ON/OFF of the light beam coupling to the optical output port for each wavelength reflected, and determines an optical output port position outputting light beams of the reflected wavelengths; and a monitor unit, installed on a return path of a light beam, which monitors a light beam whose optical coupling is made OFF.
Abstract:
A liquid crystal data calculation section forms, on the basis of input image data, liquid crystal data to display an image on a liquid crystal panel. In at least one example embodiment, an LED data calculation section forms, on the basis of the input image data, LED data for adjusting an amount of light of an LED backlight. An LED control section controls an amount of an output current of an LED power source on the basis of the LED data, and includes a protection function of limiting the amount of the output current so that the amount of the output current does not exceed a predetermined upper limit. In a case where the amount of the output current of the LED power source is reduced to the upper limit by the LED control section, a liquid crystal transmittance correction section corrects the liquid crystal data and increases transmittance so as to compensate reduction in luminance of the backlight.
Abstract:
The invention relates to a process for manufacturing plasma display panel and a substrate holder, preventing an occurrence of dust giving an unfavorable effect in a forming process of a film on a substrate of a plasma display panel in a film forming apparatus. When forming the film, a substrate (3) and a dummy substrate (35) are held by a first substrate holder (31) composed of a supporter sustaining underneath the substrate and a restrictor restricting a position of the substrates (3) in a plane direction, and a second substrate holder (32) sustaining the first substrate holder (31).
Abstract:
The invention relates to a process for manufacturing plasma display panel and a substrate holder, preventing an occurrence of dust giving an unfavorable effect in a forming process of a film on a substrate of a plasma display panel in a film forming apparatus. When forming the film, a substrate (3) and a dummy substrate (35) are held by a first substrate holder (31) composed of a supporter sustaining underneath the substrate and a restrictor restricting a position of the substrates (3) in a plane direction, and a second substrate holder (32) sustaining the first substrate holder (31).
Abstract:
An image processing device and method, and an image display device and method which realizes a high-definition displayed video by reducing motion blur caused by a holding-type display system and reducing motion blurs of the displayed video caused by the time integration effect of an image sensor while suppressing deterioration of an image. The image display device includes a motion vector detection section (101) which detects a motion vector in each predetermined region between the frames of an inputted image signal, and an edge emphasis part (2) which emphasizes the high-frequency component of the inputted image signal and an interpolated image signal generated by an FRC part (100) according to the motion amount of the inputted image signal detected by the motion vector detection section (101). This compensates the high-frequency component attenuated by the time integration effect of the image sensor to reduce the apparent motion blurs to improve the sharpness of the displayed image. By making the degree of edge emphasis of the interpolated image signal smaller than that of the inputted image signal, the sharpness of the displayed image is improved without making the image deterioration of the interpolated image signal distinct.
Abstract:
Deterioration in image quality of a moving image obtained by special reproduction caused by frame rate conversion (FRC) processing of a motion compensation type is prevented. An image displaying device includes an FRC portion 10 that converts the number of frames of the input image signal by interpolating an image signal to which motion compensation processing has been performed between frames of an input image signal, a special reproduction determining portion 14 that determines whether or not the input image signal is an image signal relating to a predetermined genre, and a controlling portion 15. The FRC portion 10 includes a motion vector detecting portion lie that detects a motion vector between frames of the input image signal, an interpolation vector evaluating portion 11f that assigns an interpolation vector between frames based on the motion vector information, and an interpolation frame generating portion 12d that generates an interpolation frame from the interpolation vector. When the input image signal is an image signal obtained by special reproduction including “fast forward reproduction” and “rewind reproduction”, the controlling portion 15 makes the motion compensation processing in the FRC portion 10 ineffective by making the motion vector detected by the motion vector detecting portion lie to zero-vector.
Abstract:
The present invention provides the following multilayer heat-shrinkable styrene-based film having an appropriate surface shape, together with excellent lubricity and blocking resistance, and resistance to ink skipping and like problems during the printing process:a multilayer heat-shrinkable styrene-based film having:layers (A) each containing 0.8 to 2.5 parts by weight of high impact polystyrene resin and 0.02 to 0.15 parts by weight of organic fine particles having a mean particle diameter of 0.5 to 5 μm per 100 parts by weight of a block copolymer of 75 to 90 wt % vinyl aromatic hydrocarbon and 10 to 25 wt % conjugated diene hydrocarbon; anda layer (B1) containing a block copolymer of 70 to 85 wt % vinyl aromatic hydrocarbon and 15 to 30 wt % conjugated diene hydrocarbon; ora layer (B2) containing a resin composition containing a copolymer of 98 to 40 wt % vinyl aromatic hydrocarbon and 2 to 60 wt % aliphatic unsaturated carboxylic acid ester.
Abstract:
In an image displaying apparatus including a motion compensated rate converting (FRC) portion, deterioration of image quality is prevented in an image having a high-speed region and a low-speed region mixed. The FRC portion includes a motion vector detecting portion 11e and an interpolation frame generating portion 12b. The motion vector detecting portion 11e includes a first region detecting means 112e1 that detects a first region (high-speed region) including a motion amount equal to or greater than a first predetermined amount from an input image signal, a second region detecting means 112e2 that detects a second region (low-speed region) including a motion amount equal to or less than a second predetermined amount from the input image signal, and a third region detecting means 113e that detects a still region from an inter-frame difference of the input image signal. The interpolation frame generating portion 12b executes a motion compensated interpolation process using motion vectors for the still region in the first region (background) and executes a zero-vector interpolation process for the still region in the second region (foreground).