摘要:
A large liquid crystal display (100) comprises a light guide plate (3) arranged on the back side of a liquid crystal panel (1). The front surface of the light guide plate (3) is flat, while the back surface thereof is concave. The upper and lower end faces of the light guide plate (3) respectively facing hot cathode fluorescent lamps (2a, 2b) have a convex shape projecting toward the respective lamps. White light from the fluorescent lamps is incident on the upper and lower end faces of the light guide plate directly or by being reflected by reflectors (4a, 4b), and propagates within the light guide plate while being reflected by the front and back surfaces of the light guide plate. At the front surface of the light guide plate, a part of the white light is directed toward the back side of the liquid crystal panel (1) by a light guide portion (5).
摘要:
A liquid crystal display unit is characterized by comprising a liquid crystal display panel, a back-light instrument for outputting light to the liquid crystal display panel, and a scattering-anisotropic optical instrument disposed on that side of the liquid crystal display panel which is opposite to the back-light instrument. The scattering-anisotropic optical instrument is so formed that the scattering intensity of light vertically entering the display screen of the liquid crystal panel is maximized. Therefore, the scattering-anisotropic optical instrument can scatter light vertically entering the display screen of the liquid crystal panel to allow a viewer to view a display screen from a wide range of viewing angles. In addition, because the unit does not scatter light entering obliquely, rather than vertically, a display screen but lets the light pass as it is, whitish appearance as is seen in an oblique-direction observation can be prevented. Therefore, whitish appearance can be prevented even if the back-light instrument does not output perfectly parallel light.
摘要:
A liquid crystal display unit is characterized by comprising a liquid crystal display panel, a back-light instrument for outputting light to the liquid crystal display panel, and a scattering-anisotropic optical instrument disposed on that side of the liquid crystal display panel which is opposite to the back-light instrument. The scattering-anisotropic optical instrument is so formed that the scattering intensity of light vertically entering the display screen of the liquid crystal panel is maximized. Therefore, the scattering-anisotropic optical instrument can scatter light vertically entering the display screen of the liquid crystal panel to allow a viewer to view a display screen from a wide range of viewing angles. In addition, because the unit does not scatter light entering obliquely, rather than vertically, a display screen but lets the light pass as it is, whitish appearance as is seen in an oblique-direction observation can be prevented. Therefore, whitish appearance can be prevented even if the back-light instrument does not output perfectly parallel light.
摘要:
A vapor growth apparatus and a vapor growth method is capable of growing a compound semiconductor layer having an evenness and an interfacial sharpness in units of atomic layers with a good productivity. A growth chamber has a cylindrical portion and an end plate which closes an upstream end of the cylindrical portion. The end plate is provided with a cation gas material supply inlet and an anion material gas supply inlet, while an exhaust device is provided on the downstream side of the cylindrical portion. A substrate holder having a substrate support surface is provided in the cylinder portion. A gas separating member separates flow paths of material gases from each other, thereby forming on the substrate support surface a plurality of material gas supply areas to which the material gases are independently supplied. A drive device rotates the substrate holder with a substrate set on the substrate support surface thereof around the center line of the cylindrical portion. Then a cation material and an anion material gas are alternately supplied to the surface of the substrate.
摘要:
A display device includes: an LED control section (4) for carrying out control in which (i) an output luminance of an LED (10) whose measured luminance is deviated from a reference luminance or (ii) output luminances of peripheral LEDs (10) which are provided around the LED (10) is or are corrected, respectively, by using control information of the plurality of LEDs, which control information contains (a) information on measured luminances of the plurality of LEDs, the information being obtained by the plurality of photosensors (11) and (b) positional information of the plurality of LEDs, the positional information being obtained by the plurality of photosensors (11), and a liquid crystal display control section (3) for controlling, based on (i) video signals which have been subjected to the video signal process and are supplied from a video signal processing section (2) and (ii) the control information supplied from the LED control section (4), (a) levels of video signals to be supplied to pixels corresponding to the LED (10), whose output luminance is corrected or (b) levels of video signals to be supplied to pixels corresponding to the peripheral LEDs, whose output luminances are corrected, the reference luminance being a luminance which is originally expected to be outputted from each of the plurality of LEDs.
摘要:
A display device includes: an LED control section (4) for carrying out control in which (i) an output luminance of an LED (10) whose measured luminance is deviated from a reference luminance or (ii) output luminances of peripheral LEDs (10) which are provided around the LED (10) is or are corrected, respectively, by using control information of the plurality of LEDs, which control information contains (a) information on measured luminances of the plurality of LEDs, the information being obtained by the plurality of photosensors (11) and (b) positional information of the plurality of LEDs, the positional information being obtained by the plurality of photosensors (11), and a liquid crystal display control section (3) for controlling, based on (i) video signals which have been subjected to the video signal process and are supplied from a video signal processing section (2) and (ii) the control information supplied from the LED control section (4), (a) levels of video signals to be supplied to pixels corresponding to the LED (10), whose output luminance is corrected or (b) levels of video signals to be supplied to pixels corresponding to the peripheral LEDs, whose output luminances are corrected, the reference luminance being a luminance which is originally expected to be outputted from each of the plurality of LEDs.
摘要:
A light guide plate (11) has: a light incidence surface (11c) through which light from a light source enters the light guide plate; a back surface (11b) for changing a direction of the light which has entered the light guide plate (11) through the light incidence surface (11c); and a light exit surface (11a). The back surface (11b) has a plurality of dot holes (12) each of which has an inclined surface for changing the direction of the light which has entered the light guide plate (11) through the light incidence surface (11a), and an angle θ between the inclined surface of each of the plurality of dot holes 12 and the back surface satisfies 53°≦θ≦56°.
摘要:
The present invention provides a method for producing a semiconductor laser device having at least a light emitting section, a cap layer and an electrode successively formed on a semiconductor substrate, the light emitting section including a light emitting layer located approximately in a middle of a thickness of the device. The method includes the step of growing the light emitting section and the cap layer using a vapor phase epitaxy method, wherein a growth rate of the cap layer is greater than a growth rate of the light emitting section.
摘要:
A semiconductor laser device having high performance, low operating voltage, and long service life, and a method for fabricating the same are provided. A semiconductor multilayer film including an active layer for use of laser beam oscillation is stacked on a substrate. Then a clad layer composed of p-type AlGaAs doped with a p-type impurity Mg, and a contact layer composed of p-type GaAs doped also with Mg are grown by an LPE growth process, and further a surface layer having a high-resistance portion present in the contact layer and low in carrier concentration is removed. The active layer for use of laser beam oscillation is arranged in a substantially center of an end surface from which the laser beam is emitted.
摘要:
A liquid crystal data calculation section forms, on the basis of input image data, liquid crystal data to display an image on a liquid crystal panel. In at least one example embodiment, an LED data calculation section forms, on the basis of the input image data, LED data for adjusting an amount of light of an LED backlight. An LED control section controls an amount of an output current of an LED power source on the basis of the LED data, and includes a protection function of limiting the amount of the output current so that the amount of the output current does not exceed a predetermined upper limit. In a case where the amount of the output current of the LED power source is reduced to the upper limit by the LED control section, a liquid crystal transmittance correction section corrects the liquid crystal data and increases transmittance so as to compensate reduction in luminance of the backlight.