摘要:
The design of a vacuum gauge utilizing a micromachined silicon vacuum sensor to measure the extended vacuum range from ambient to ultrahigh vacuum by registering the gas thermal properties at each vacuum range is disclosed in the present invention. This single device is capable of measuring the pressure range from ambient and above to ultrahigh vacuum. This device applies to all types of vacuum measurement where no medium attack silicon is present. The disclosed vacuum gauge operates with thermistors and thermal pile on a membrane of the thermal isolation diaphragm structure with a heat isolation cavity underneath.
摘要:
An electronic utility gas meter using MEMS thermal mass flow sensor to meter gas custody transfer and MEMS gas thermal property sensor to compensate the metering values due to gas composition variations is disclosed in the present invention. The meter is designed to have a MEMS mass flow sensor to meter the city utility gas consumption independent of environmental temperature and pressure while a MEMS gas thermal property or dual gas thermal property sensors to compensate the tariff due to the gas composition variations for compliance with the current regulation requirements of tariff and remove the major concerns for the wide deployment of the thermal mass MEMS utility gas meters.
摘要:
The design and structure of a physiological fluid collection bag with instant data transmission capabilities, utilizing a micromachined thermal time-of-flight flow sensor as well as integrated pH and calorimetric mass flow sensors for simultaneous and continuous measurement of the instant volumetric flow rate, accumulated total volume, pH and density of data of a collected fluid is disclosed in embodiments. The fluid collection bag includes a collection chamber and storage chamber wherein the sensors are installed inside the storage chamber of the bag and the bag is fully disposable. The fluid collection bag is able to measure the flow rate and instantly relay the data to a reusable data processing unit that can transmit the data to a designated data center or to medical staff.
摘要:
The design and structure as well as the control scheme of a smart electronic vaporizer device having a micro-machined (a.k.a. MEMS, Micro Electro Mechanical Systems) mass flow sensor and control electronics that provide the vaporizing process in proportional to the user inhalation flowrate or strength for the best simulation of the experience for traditional cigarette. The device further incorporates a MEMS gas composition sensor that is coupled with the mass flow sensor to measure the user's respiratory health data, including but not limited to asthma status and metabolism related respiratory exchange rate. The device is further capable to relay the data to the designated mobile device and further to the designated cloud for big data process and sharing.
摘要:
This invention is related to an apparatus which incorporates a microfabricated silicon mass flow sensor to measure city gas flow rate in a medium pressure range for utility industry which is dominated by conventional mechanical meters such as turbine and rotary meters. The microfabricated mass flow sensor is so called micro-electro-mechanical systems (a.k.a. MEMS) device. Due to the small feature size of micro scale for MEMS mass flow sensor, the invented apparatus includes many advantages such as low power consumption, compact package, high reliability and extended dynamic measurement range. This apparatus is also provided with a stable flow conditioning to achieve a desired dynamic range capability. Furthermore, because of the high accuracy characteristic, the apparatus in this invention could be applied for custody transfer or tariff in utility industry as well.
摘要:
A silicon mass flow sensor manufacture process that enables the backside contacts and eliminates the conventional front side wire binding process, and the assembly of such a mass flow sensor is disclosed in the present invention. The achieved assembly enhances the reliability by eliminating the binding wire exposure to the flow medium that may lead to detrimental failure due to the wire shortage or breakage while the miniature footprint could be maintained. The assembly further reduces flow instability from the flow sensor package including the bump of wire sealing. The invented mass flow sensor assembly can be a flow sensor module if the supporting sensor carrier is pre-designed with the control electronics. Without the control electronics, the said mass flow sensor assembly is easy to install into desired flow channels and connect to the external control electronics.
摘要:
An all-electronic utility gas meter using with micromachined (a.k.a. MEMS Micro Electro Mechanical Systems) silicon sensor to measure gas metrology data for custody transfer or tariff in city gas metering application is disclosed in the present invention. The meter has two separate metrology units. One of the units is located in the main flow channel with the insertion probing configuration while the other is configured as a bypass unit assembly with the main metrology unit. The bypass metrology unit can perform independent metrology tasks and can be exchanged onsite during service, maintenance or repair without dismantle the meter from the service pipeline. The bypass metrology unit also can be used to compare the measured data from time to time and performance self-diagnosis that shall help the performance and data authentication during the meter field service. Both of the units can be powered by battery or external sources. The units can be connected to network as well as provide internal plural storages for data transmission and safety.
摘要:
This invention is related to an apparatus which incorporates a microfabricated silicon mass flow sensor to measure city gas flow rate in a medium pressure range for utility industry which is dominated by conventional mechanical meters such as turbine and rotary meters. The microfabricated mass flow sensor is so called micro-electromechanical systems (a.k.a. MEMS) device. Due to the small feature size of micro scale for MEMS mass flow sensor, the invented apparatus includes many advantages such as low power consumption, compact package, high reliability and extended dynamic measurement range. This apparatus is also provided with a stable flow conditioning to achieve a desired dynamic range capability. Furthermore, because of the high accuracy characteristic, the apparatus in this invention could be applied tot custody transfer or tariff in utility industry as well.
摘要:
An apparatus integrated with micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon thermal sensor as a proximity switch sensor in air/oil Lubricators is disclosed in the present invention. The present invention relates to mass flow sensing and measurement for both gas and liquid phase and relates to air/oil lubrication process for multi-point lubrication machine. The invented apparatus is utilized as an alarm device to prevent mechanical system failures caused by the discontinuity of oil lubrication. The MEMS silicon thermal sensor is distinguished with a variety of advantages of small size, low power consumption, high reliability and high accuracy. In addition to the above benefits, the most significant and critical advantage is its fast response time of less than 20 msec, which makes the proximity switch control become viable for preventing equipment damage from oil lubricants discontinuity.
摘要:
A wind or gas velocity profiler integrated with micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon sensors in an open or enclosed space is disclosed in the present invention. There are three main embodiments disclosed in the present invention. Through the preambles of the independent claims, the advantages and merits of such measurement apparatus with MEMS flow sensor will be demonstrated as well. A silicon-based MEMS flow sensor can greatly reduce the sensor fabrication cost by a batch production. The integration with MEMS flow sensor makes the invented anemometer operate in the ways of better measurement accuracy, lower power consumption, higher reliability and a compact dimension compared to traditional anemometers such as cup anemometer, thermal anemometer and ultrasonic anemometer.