Abstract:
A method, computer readable medium, and system are disclosed for rendering images utilizing a foveated rendering algorithm with post-process filtering to enhance a contrast of the foveated image. The method includes the step of receiving a three-dimensional scene, rendering the 3D scene according to a foveated rendering algorithm to generate a foveated image, and filtering the foveated image using a contrast-enhancing filter to generate a filtered foveated image. The foveated rendering algorithm may incorporate aspects of coarse pixel shading, mipmapped texture maps, linear efficient anti-aliased normal maps, exponential variance shadow maps, and specular anti-aliasing techniques. The foveated rendering algorithm may also be combined with temporal anti-aliasing techniques to further reduce artifacts in the foveated image.
Abstract:
A method and system for operating a catadioptric glasses system is presented. The method includes the steps of generating an image via a light engine included in a glasses system and projecting the image onto a display that includes a diffusion layer positioned between a curved mirror and a user's retina. Light emitted from a surface of the diffusion layer is reflected off the curved mirror to the user's retina through the diffusion layer, and the diffusion layer is located between a focal point of the curved mirror and a surface of the curved mirror. The diffusion layer may be mechanically moved relative to the user's eye to enable light to pass through transparent regions in the diffusion layer in a time multiplexed fashion. The glasses system may also include a mirror stack to enable different virtual images to be formed at different depths.
Abstract:
In embodiments of the invention, an apparatus may include a display comprising a plurality of pixels and a computer system coupled with the display and operable to instruct the display to display images. The apparatus may further include an SLM array located adjacent to the display and comprising a plurality of SLMs, wherein the SLM array is operable to produce a light field by altering light emitted by the display to simulate an object that is in focus to an observer while the display and the SLM array are located within a near-eye range of the observer.
Abstract:
A system, method, and computer program product are provided for tiled deferred shading. In operation, a plurality of photons associated with at least one scene are identified. Further, a plurality of screen-space tiles associated with the at least one scene are identified. Additionally, each of the plurality of screen-space tiles capable of being affected by a projection of an effect sphere for each of the plurality of photons are identified. Furthermore, at least a subset of photons associated with each of the screen-space tiles from which to compute shading are selected. Moreover, shading for the at least one scene is computed utilizing the selected at least a subset of photons.
Abstract:
A system, method, and computer program product are provided for generating anti-aliased images. The method includes the steps of assigning one or more samples to a plurality of clusters, each cluster in the plurality of clusters corresponding to an aggregate stored in an aggregate geometry buffer, where each of the one or more samples is covered by a visible fragment and rasterizing three-dimensional geometry to generate material parameters for each sample of the one or more samples. For each cluster in the plurality of clusters, the material parameters for each sample assigned to the cluster are combined to produce the aggregate. The combined material parameters for each cluster are stored in an aggregate geometry buffer. An anti-aliased image may then be generated by shading the combined material parameters.
Abstract:
A system, method, and computer program product that displays a light field to simulate an electronic viewfinder of an image capture device. The method includes the operations of receiving a scene corresponding to the electronic viewfinder and determining a pre-filtered image that simulates the scene, where the pre-filtered image represents a light field and corresponds to a target image. The pre-filtered image is displayed as the light field to produce the target image.
Abstract:
A system, method, and computer program product are provided for computing indirect lighting in a cloud network. In operation, one or more scenes for rendering are identified. Further, indirect lighting associated with the one or more scenes is identified. Additionally, computation associated with the indirect lighting is performed in a cloud network utilizing at least one of a voxel-based algorithm, a photon-based algorithm, or an irradiance-map-based algorithm.
Abstract:
In embodiments of the invention, an apparatus may include a display comprising a plurality of pixels and a computer system coupled with the display and operable to instruct the display to display images. The apparatus may further include a microlens array located adjacent to the display and comprising a plurality of microlenses, wherein the microlens array is operable to produce a light field by altering light emitted by the display to simulate an object that is in focus to an observer while the display and the microlens array are located within a near-eye range of the observer.
Abstract:
In embodiments of the invention, an apparatus may include a display comprising a plurality of pixels and a computer system coupled with the display and operable to instruct the display to display images. The apparatus may further include an SLM array located adjacent to the display and comprising a plurality of SLMs, wherein the SLM array is operable to produce a light field by altering light emitted by the display to simulate an object that is in focus to an observer while the display and the SLM array are located within a near-eye range of the observer.