摘要:
An access point is configured based on acquired information. An access point may be configured based on the configuration(s) of at least one other access point. An identifier to be transmitted by an access point may be selected based on the identifier(s) transmitted by at least one other access point. An access point may configure itself with assistance from a configuration server. For example, the access point may send information such as the location of the access point to a configuration server and the configuration server may respond with a list of neighboring access points for that access point. A configuration server may provide configuration information to an access point based on the location of the access point. A configuration server also may direct an access point to a different configuration server.
摘要:
Systems and methodologies are described that facilitate defining new control channels in legacy wireless networks. Control data resources for new systems can be defined over resources reserved for general data communications in the legacy wireless network specification. In this regard, legacy devices can still be supported by devices implementing new control data resources, and the new control data resources can avoid substantial interference that is typically exhibited over legacy control and/or reference signal resources by instead using the general data resources. In addition, new system devices can avoid scheduling data communication resources over the new control resources to create a substantially non-interfered global control segment. Control data can be transmitted over the segment using beacon-based technologies, reuse schemes, and/or the like.
摘要:
Techniques for combating high interference in a dominant interference scenario are described. A terminal may observe high interference from an interfering base station in a dominant interference scenario. In an aspect, high interference may be combated by reserving time intervals for a serving base station. The terminal may communicate with the serving base station in the reserved time intervals and may avoid high interference that may desensitize a receiver at the terminal. In one design, the terminal may measure received power of base stations and may report its interference condition. The serving base station may receive a report from the terminal, determine that the terminal is observing high interference, and send a reservation request to the interfering base station to reserve time intervals. The interfering base station may grant the request and return a response. The serving base station may thereafter communicate with the terminal in the reserved time intervals.
摘要:
A method for peer-to-peer wireless communication by a first user equipment (UE) includes communicating with a second UE, and using a wireless area network air interface during the communication with the second UE. The communicating with the second UE comprises transmitting a downlink signal configured for downlink of the wireless area network air interface.
摘要:
Techniques for mitigating interference in a wireless communication network are described. A terminal may desire to communicate with a weaker serving base station and may observe high interference from a strong interfering base station. The two base stations may be asynchronous and have different frame timing. In an aspect, high interference may be mitigated by having the interfering base station reserve downlink and/or uplink resources. The interfering base station may transmit at a low power level or not at all on the reserved downlink resources to reduce interference to the terminal. Terminals served by the interfering base station may transmit at a low power level or not at all on the reserved uplink resources to reduce interference at the serving base station. The terminal may then be able to communicate with the serving base station.
摘要:
Techniques for sending low reuse preambles in a wireless network are described. In an aspect, a base station may send a low reuse preamble on reserved frequency resources to allow terminals to detect the base station even in the presence of strong interfering base stations. The base station may generate the low reuse preamble to include a pilot portion and a data portion. The base station may determine frequency resources reserved for sending low reuse preambles by base stations. The base station may then send the low reuse preamble on the reserved frequency resources, e.g., at a pseudo-randomly selected time. A terminal may detect for low reuse preambles sent by the base stations on the reserved frequency resources. The terminal may recover information for a base station from a detected low reuse preamble.
摘要:
Systems and methodologies are described herein that facilitate interference control and resource management in a wireless communication system. As described herein, a base station, terminal, and/or other entity in a wireless communication system that observes interference from one or more other network entities can construct and communicate resource utilization messages (RUMs) in order to request the interfering network entities to conduct power backoff on designated resources. Parameters constructed as a function of quality of service (QoS) and/or priority metrics (such as head-of-line delays, queue lengths, burst sizes, delay targets, average rates, or the like) can be included within the RUM, such that an entity receiving the RUM can compute QoS changes associated with various power backoff levels in order to select a power backoff level that maximizes overall system QoS performance.
摘要:
A wireless communication network uses backhaul negotiation based upon static and dynamic resource assignment on jamming graphs. Static reuse factor design methods including fractional frequency reuse (FFR) are addressed. The jamming graph is used to summarize the interfering relationship between transmitters (nodes in the jamming graph). Negotiation-based algorithm is used to arrive at a static resource assignment so that a large reuse factor can be achieved while jamming scenario can be avoided. As a result of such algorithm, each transmitter is assigned some resources, over which traffic transmission can be done instantaneously to reduce the packet delay for short packets. Based on the result of static resource negotiation algorithm, a dynamic resource algorithm can be run, such that the resources assigned to different nodes can be share in a bursty traffic scenario to further reduce packet delay for larger packet size cases, while jamming be also avoided.
摘要:
A wireless communication network uses backhaul negotiation based upon static and dynamic resource assignment on jamming graphs. Static reuse factor design methods including fractional frequency reuse (FFR) are addressed. The jamming graph is used to summarize the interfering relationship between transmitters (nodes in the jamming graph). Negotiation-based algorithm is used to arrive at a static resource assignment so that a large reuse factor can be achieved while jamming scenario can be avoided. As a result of such algorithm, each transmitter is assigned some resources, over which traffic transmission can be done instantaneously to reduce the packet delay for short packets. Based on the result of static resource negotiation algorithm, a dynamic resource algorithm can be run, such that the resources assigned to different nodes can be share in a bursty traffic scenario to further reduce packet delay for larger packet size cases, while jamming be also avoided.