摘要:
According to an embodiment of the invention, a method for repairing a coated high pressure turbine blade, which has been exposed to engine operation, to restore coated airfoil contour dimensions of the blade, and improve upon the prior bond coat is disclosed. The method comprises providing an engine run high pressure turbine blade including a base metal substrate made of a nickel-based alloy and having thereon a thermal barrier coating system. The thermal barrier coating system comprises a diffusion bond coat on the base metal substrate and a top ceramic thermal barrier coating comprising a yttria stabilized zirconia material. The top ceramic thermal barrier coating has a nominal thickness t. The method further comprises removing the thermal barrier coating system, wherein a portion of the base metal substrate also is removed, and determining the thickness of the base metal substrate removed. The portion of the base metal substrate removed has a thickness, Δt. The method also comprises applying a β phase NiAl overlay coating to the substrate, and determining the difference in thickness, Δx, between the β phase NiAl overlay coating and the previously removed bond coat. The method further comprises reapplying the top ceramic thermal barrier coating to a nominal thickness of t+Δt-Δx, wherein Δt compensates for the portion of removed base metal substrate. Advantageously, the coated airfoil contour dimensions of the high pressure turbine blade are restored to about the coated dimensions preceding the engine run.
摘要:
A coating and coating process for incorporating surface features on an air-cooled substrate surface of a component for the purpose of promoting heat transfer from the component. The coating process generally comprises depositing a first metallic coating material on the surface of the component using a first set of coating conditions to form a first environmental coating layer, and then depositing a second metallic coating material using a second set of coating conditions that differ from the first set, such that an outer environmental coating layer is formed having raised surface features that cause the surface of the outer environmental coating layer to be rougher than the surface of the first environmental coating layer.
摘要:
A turbine engine component comprising a substrate made of a nickel-base or cobalt-base superalloy, a non-metallic oxide or nitride diffusion barrier layer overlying the substrate, and a protective coating overlying the barrier layer, the protective coating comprising at least one platinum group metal selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium. The diffusion barrier layer may be a deposited or thermally grown oxide material, especially aluminum oxide. The protective coating may be heat treated to increase homogeneity of the coating and adherence with the substrate. The component typically further comprises a ceramic thermal barrier coating overlying the protective coating. Also disclosed are methods for forming a protective coating system on the turbine engine component by forming the non-metallic oxide or nitride diffusion barrier layer on the substrate and then depositing the platinum group metal on top of the barrier layer.
摘要:
A TBC system suitable for protecting the surface of a substrate subjected to a hostile thermal environment. The TBC system comprises a bond coat on the substrate surface, an alumina scale on the bond coat, and a multilayer TBC comprising a thermal-sprayed first ceramic layer on the alumina scale and a thermal-sprayed second ceramic layer overlying the first ceramic layer. The first ceramic layer consists essentially of partially stabilized zirconia so as to comprise the tetragonal and cubic phases of zirconia. The second ceramic layer consists essentially of fully stabilized zirconia so as to consist essentially of the cubic phase of zirconia. The second ceramic layer is also characterized by having vertical microcracks that extend through the thickness thereof. The second ceramic layer is thicker and more erosion resistant than the first ceramic layer.
摘要:
A strengthened bond coat for improving the adherence of a thermal barrier coating to an underlying metal substrate to resist spallation without degrading oxidation resistance of the bond coat. The bond coat comprises a bond coating material selected from the group consisting of overlay alloy coating materials, aluminide diffusion coating materials and combinations thereof. Particles comprising a substantially insoluble bond coat strengthening compound and having a relatively fine particle size of about 2 microns or less are dispersed within at least the upper portion of the bond coat in an amount sufficient to impart strengthening to the bond coat, and thus limit ratcheting or rumpling thereof.
摘要:
According to an embodiment of the invention, a method for repairing a coated high pressure turbine blade, which has been exposed to engine operation, to restore coated airfoil contour dimensions of the blade, is disclosed. The method comprises providing an engine run high pressure turbine blade including a base metal substrate made of a nickel-based alloy and having thereon a thermal barrier coating system. The thermal barrier coating system comprises a diffusion bond coat on the base metal substrate and a top ceramic thermal barrier coating comprising a yttria stabilized zirconia material. The top ceramic thermal barrier coating has a nominal thickness t. The method further comprises removing the thermal barrier coating system, wherein a portion of the base metal substrate also is removed, and determining the thickness of the base metal substrate removed. The portion of the base metal substrate removed has a thickness, Δt. The method also comprises reapplying the diffusion bond coat to the substrate, wherein the bond coat is reapplied to a thickness, which is about the same as applied prior to the engine operation; and reapplying the top ceramic thermal barrier coating to a nominal thickness of t+Δt, wherein Δt compensates for the portion of removed base metal substrate. Advantageously, the coated airfoil contour dimensions of the high pressure turbine blade are restored to about the coated dimensions preceding the engine run.
摘要:
A turbine engine component comprising a substrate made of a nickel-base or cobalt-base superalloy, a non-metallic oxide or nitride diffusion barrier layer overlying the substrate, and a protective coating overlying the barrier layer, the protective coating comprising at least one platinum group metal selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium. The diffusion barrier layer may be a deposited or thermally grown oxide material, especially aluminum oxide. The protective coating may be heat treated to increase homogeneity of the coating and adherence with the substrate. The component typically further comprises a ceramic thermal barrier coating overlying the protective coating. Also disclosed are methods for forming a protective coating system on the turbine engine component by forming the non-metallic oxide or nitride diffusion barrier layer on the substrate and then depositing the platinum group metal on top of the barrier layer.
摘要:
An actively cooled TBC bond coat wherein active convection cooling is provided through micro channels inside or adjacent to a bond coat layer applied to a substrate. The micro channels communicate directly with at least one cooling fluid supply contained within a turbine engine component, thereby providing direct and efficient cooling for the bond coat layer. Because the substrate is covered with an actively cooled bond coat layer, it will reduce the cooling requirement for the substrate, thus allowing the engine to run at higher operating temperature without the need for additional cooling air, achieving a better engine performance. In one form, the component includes a substrate having at least one substrate channel with a first and second end. At least one micro channel is in fluid communication with a plenum which in turn is in fluid communication with at least one substrate channel through an exit orifice in the substrate channel which is at a first end of the substrate channel. A second end of the substrate channel is in communication with a cooling fluid supply, for example, cooling circuits contained within the turbine engine component. The micro channel is located between the substrate surface and the outer gas flow path surface of the component.
摘要:
An article such as a gas turbine blade or vane has a superalloy substrate, and a coating system deposited on the substrate. The coating system includes a protective layer overlying the substrate, and, optionally, a ceramic thermal barrier coating layer overlying the bond coat. The protective layer has an uppermost layer with a composition including platinum, aluminum, and, in atom percent, from about 0.14 to about 2.8 percent hafnium and from about 2.7 to about 7.0 percent silicon, with the atomic ratio of silicon:hafnium being from about 1.7:1 to about 5.6:1.
摘要:
A protected article includes a substrate, such as a nickel-base superalloy, a protective coating comprising aluminum overlying a surface of the substrate, and an iridium-containing oxygen barrier layer overlying the protective coating. A ceramic thermal barrier coating may overlie the protective coating and the oxygen barrier layer.