摘要:
An engine ECU executes a program including the steps of: calculating a knock magnitude N by dividing an integrated value lpkknk obtained by integrating the magnitude of vibration in the knock detection gate by BGL; controlling ignition timing according to a result of comparison between knock magnitude N and a determination value VJ; stopping updating of a standard deviation σ when it is determined that determination value VJ to be compared with knock magnitude N is to be changed; updating a median value VM by increasing an update amount of median value VM; and updating BGL according to median value VM and standard deviation σ.
摘要:
An engine ECU executes a program including the steps of: calculating a knock magnitude N by dividing an integrated value lpkknk obtained by integrating the magnitude of vibration in the knock detection gate by BGL; controlling ignition timing according to a result of comparison between knock magnitude N and a determination value VJ; stopping updating of a standard deviation σ when it is determined that determination value VJ to be compared with knock magnitude N is to be changed; updating a median value VM by increasing an update amount of median value VM; and updating BGL according to median value VM and standard deviation σ.
摘要:
An engine ECU executes a program including a step of calculating coefficient of correlation K that is a value related to a deviation between a vibration waveform and a knock waveform model by comparing the engine's vibration waveform with the knock waveform model stored in advance at a plurality of timings, a step of calculating a knock intensity N as based on a largest coefficient of correlation K among the calculated coefficient of correlation Ks, a step of determining that the engine knocks if knock intensity N is larger than a predetermined reference value (YES at S108), and a step of determining that the engine does not knock if knock intensity N is not larger than a predetermined reference value (NO at S108).
摘要:
An engine ECU executes a program including a step of calculating coefficient of correlation K that is a value related to a deviation between a vibration waveform and a knock waveform model by comparing the engine's vibration waveform with the knock waveform model stored in advance at a plurality of timings, a step of calculating a knock intensity N as based on a largest coefficient of correlation K among the calculated coefficient of correlation Ks, a step of determining that the engine knocks if knock intensity N is larger than a predetermined reference value (YES at S108), and a step of determining that the engine does not knock if knock intensity N is not larger than a predetermined reference value (NO at S108).
摘要:
The apparatus of the present invention corrects a control target value of ignition timing using a multipoint learned value AGdp(n) for compensating for a change amount of the ignition timing caused by time-dependent change of the engine and a basic learned value AG(i) for compensating for a change amount of the ignition timing caused by a factor other than the aforementioned time-dependent change of the engine. In a multipoint learning range n in which the time-dependent change of the engine influences the ignition timing to a great extent, the control target is corrected using the multipoint learned value AGdp(n) and the basic learned value AG(i). In ranges other than the multipoint learning range n, the control target is corrected using only the basic learned value AG(i). Normally, only the learning of the multipoint learned value AGdp(n) is permitted in the multipoint learning range n, and only the learning of the basic learned value AG(i) is permitted in the ranges other than the multipoint learning range n. When it is determined that there is a possibility that fuel has been fed to a fuel tank, the learning of the multipoint learned value AGdp(n) is prohibited for a subsequent predetermined period (if NO in step S103 or step S104).
摘要:
The apparatus of the present invention corrects a control target value of ignition timing using a multipoint learned value AGdp(n) for compensating for a change amount of the ignition timing caused by time-dependent change of the engine and a basic learned value AG(i) for compensating for a change amount of the ignition timing caused by a factor other than the aforementioned time-dependent change of the engine. In a multipoint learning range n in which the time-dependent change of the engine influences the ignition timing to a great extent, the control target is corrected using the multipoint learned value AGdp(n) and the basic learned value AG(i). In ranges other than the multipoint learning range n, the control target is corrected using only the basic learned value AG(i). Normally, only the learning of the multipoint learned value AGdp(n) is permitted in the multipoint learning range n, and only the learning of the basic learned value AG(i) is permitted in the ranges other than the multipoint learning range n. When it is determined that there is a possibility that fuel has been fed to a fuel tank, the learning of the multipoint learned value AGdp(n) is prohibited for a subsequent predetermined period (if NO in step S103 or step S104).
摘要:
A thermal fuse includes an insulating case having a bottom and having an opening provided therein, a fusible alloy provided in the insulating case, a lead conductor having one end connected to the fusible alloy and other end led out from the insulating case through the opening of the insulating case, a flux provided on the fusible alloy, and a sealer for sealing the opening of the insulating case. The volume of a space between the fusible alloy in the insulating case and the sealer is larger than the volume of the flux. Sealing of the fuse is prevented from deteriorating, and the insulating film is prevented from damage even when the thermal fuse is used for breaking a large current at a high voltage.
摘要:
A thermal fuse includes an insulating case having a bottom and having an opening provided therein, a fusible alloy provided in the insulating case, a lead conductor having one end connected to the fusible alloy and other end led out from the insulating case through the opening of the insulating case, a flux provided on the fusible alloy, and a sealer for sealing the opening of the insulating case. The volume of a space between the fusible alloy in the insulating case and the sealer is larger than the volume of the flux. Sealing of the fuse is prevented from deteriorating, and the insulating film is prevented from damage even when the thermal fuse is used for breaking a large current at a high voltage.
摘要:
A thermal fuse includes a first insulation film having a pair of metal terminals mounted thereto, a fusible alloy located over the first insulation film and connected between respective ends of the metal terminals, a second insulation film provided over the fusible alloy and bonded to the first insulation film as to provide a space between the first and second insulation films. The fusible alloy includes an Sn—Bi—In alloy containing 20 to 39.5 wt. % of tin, 11.5 to 31 wt. % of bismuth, and 49 to 68.5 wt. % of indium. The fusible alloy does not release lead or cadmium even after being disposed of since it contains no lead and no cadmium.
摘要:
Quantity of flux coated on fusible alloy of a thermal fuse disclosed can be inspected accurately by an image processing method. The thermal fuse comprises: (a) first insulation film 11 coupled with a pair of metal terminals 12; (b) fusible alloy 13 coupled between ends of the metal terminals 12, being placed above first insulation film 11; (c) flux 14 coated on fusible alloy 13; and (d) second insulation film 15 disposed on first insulation film 11 so that an internal space is formed, being placed above fusible alloy 13, wherein at least either of first insulation film 11 or second insulation film 15 is transparent or translucent, and flux 14 has the Gardner color scale from 4 to 16.