Abstract:
A baseline performance of a disk drive is found based on a media speed and a bit aspect ratio of the drive. A parallelism architecture is chosen for the disk drive based on an end-use application of the drive. The parallelism architecture includes two heads capable of simultaneously accessing one or more disks of the disk drive. An increased performance of the disk drive is determined due to the parallelism architecture, and at least one of the media speed and bit aspect ratio are reduced such that a final drive performance with the parallelism architecture satisfies the baseline performance, the baseline performance being less than the increased performance. The reduction of the media speed and/or bit aspect ratio increases another capability of the drive over that of the equivalent drive.
Abstract:
A slider includes an array of two or more transducer sets offset from one another in a cross-track direction. Each transducer set includes at least one writer and at least one reader. All of the transducer sets are configured to operate simultaneously to perform any combination of reading and writing on two or more tracks of a recording medium. At least one actuator is included between two the transducer sets. The actuator is configured to adjust a cross-track spacing between the two transducer sets in response to a control current.
Abstract:
In response to a command to update a target track, two tracks or more are concurrently read. The two tracks or more tracks include a top track that partially overlaps the target track. Data of the top track is stored in a memory, and the update data is written over at least part of the target track. The stored data is written on the recording medium over the top track or at a different location.
Abstract:
A combination user data signal is read from two or more inner tracks of a recording medium via a first reader that encompasses the inner tracks. First and second data signals are read from respective first and second outer tracks that surround the inner tracks via second and third co-planar readers that are on a same head-gimbal assembly as the first reader. The first reader is centered between and downtrack from the first and second co-planar readers on the read head. User data is recovered based on the combination user data signal and the first and second data signals.
Abstract:
Technologies are described herein for relaxing design constraints on magnetic recording media through the use of two-dimensional magnetic recording in a storage device. A storage device comprises a magnetic recording surface comprising a plurality of discrete storage locations formatted in an ordered pattern, the magnetic recording surface configured so that a single bit of data is stored in two or more of the discrete storage locations. The storage device further includes a read-write channel configured to utilize two-dimensional magnetic recording to read and write data to the magnetic recording surface.
Abstract:
A readback signal from a first reader and a readback signal from a second reader are received, the first reader and the second reader configured to read two-dimensional data from at least one track of a recording media. A quality metric of the second reader is measured based on the readback signal. It is determined if the quality metric for the second reader is above a threshold. If the quality metric is above the threshold, the first reader and the second reader are used to read the data.
Abstract:
Technologies are described herein for utilizing multiple, wide readers to read narrow data tracks on a magnetic recording media in a storage device. A system for reading a data track on a magnetic recording media comprises a plurality of reader elements and a multi-reader decoder module operably connected to the plurality of reader elements. Each of the reader elements is configured to read a magnetic signal from the magnetic recording media. Each reader element may be wider than a width of the data track on the recording media. The multi-reader decoder module is configured to receive a read signal from each of the reader elements, and decode the data on the data track based on the read signals from the reader elements.
Abstract:
Apparatus for two dimensional data reading. In accordance with some embodiments, a magnetic read element has a plurality of read sensors positioned symmetrically about a pivot point with at least two of the read sensors configured to concurrently read two dimensional user data while being immune to skew angle misalignment.
Abstract:
Apparatus for two dimensional data reading. In accordance with some embodiments, a magnetic read element has a plurality of read sensors positioned symmetrically about a pivot point with at least two of the read sensors configured to concurrently read two dimensional user data while being immune to skew angle misalignment.