Abstract:
A light-emitting element which includes a plurality of light-emitting layers between a pair of electrodes and has low driving voltage and high emission efficiency is provided. A light-emitting element including first to third light-emitting layers between a cathode and an anode is provided. The first light-emitting layer includes a first phosphorescent material and a first electron-transport material; the second light-emitting layer includes a second phosphorescent material and a second electron-transport material; the third light-emitting layer includes a fluorescent material and a third electron-transport material; the first to third light-emitting elements are provided in contact with an electron-transport layer positioned on a cathode side; and a triplet excitation energy level of a material included in the electron-transport layer is lower than triplet excitation energy levels of the first electron-transport material and the second electron-transport material.
Abstract:
A novel compound is provided. Alight-emitting device having high emission efficiency and a long lifetime is also provided. An organic compound is represented by General Formula (G2), in which a benzo[a]anthracene skeleton is bonded to the 2-position of an anthracene skeleton. In General Formula (G2), R1 to R3, R5 to R12, and R21 to R29 each independently represent any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 13 carbon atoms in a ring. Another embodiment of the present invention is a light-emitting device including the compound.
Abstract:
In an organic compound, two groups each including a benzonaphthofuranylamine skeleton are bonded to a central skeleton including a fluorene skeleton. The organic compound emits favorable blue light. Furthermore, the organic compound has a high hole-transport property.
Abstract:
A light-emitting element that includes a fluorescent material and has a high emission efficiency is provided. A light-emitting element in which a delayed fluorescence component due to TTA accounts for a high proportion of emissive components is provided. A novel light-emitting device with a high emission efficiency and a low power consumption is provided. A light-emitting element includes an anode, a cathode, and an EL layer. The EL layer includes a light-emitting layer including a host material and an electron-transport layer including a first material in contact with the light-emitting layer. The LUMO level of the first material is lower than that of the host material. The proportion of a delayed fluorescence component due to TTA is greater than or equal to 10 percent of the light emission from the EL layer. The proportion of the delayed fluorescence component due to TTA may be greater than or equal to 15 percent of the light emission.
Abstract:
In an organic compound, two groups each including a benzonaphthofuranylamine skeleton are bonded to a central skeleton including a fluorene skeleton. The organic compound emits favorable blue light. Furthermore, the organic compound has a high hole-transport property.
Abstract:
To provide a novel heterocyclic compound that can be used as a host material in which a light-emitting substance of a light-emitting layer is dispersed. A heterocyclic compound comprising a dibenzo[f,h]quinoxaline ring and two hole-transport skeletons, where the dibenzo[f,h]quinoxaline ring and the two hole-transport skeletons are bonded to an aromatic hydrocarbon group. A heterocyclic compound represented by the following general formula (G1) is provided. Note that in the formula, A1 and A2 each independently represent any of a substituted or unsubstituted carbazole skeleton, a substituted or unsubstituted dibenzofuran skeleton, and a substituted or unsubstituted dibenzothiophen skeleton; B represents a substituted or unsubstituted dibenzo[f,h]quinoxaline skeleton; and Ar represents an arene skeleton having 6 to 13 carbon atoms. A light-emitting element including the heterocyclic compound is provided.
Abstract:
A novel light-emitting device that is highly convenient, useful, or reliable is provided. The light-emitting device includes a first electrode, a second electrode, a first unit, and a first layer, and the first unit is held between the first electrode and the second electrode and includes a second layer, a third layer, and a fourth layer. The second layer is held between the third layer and the fourth layer, and the second layer contains a light-emitting material. The fourth layer is held between the second layer and the second electrode and contains a first organic compound. The first organic compound has a π-electron deficient heteroaromatic ring skeleton and a π-electron rich heteroaromatic ring skeleton and has a HOMO level higher than or equal to −6.0 eV and lower than or equal to −5.6 eV. The first layer is held between the first electrode and the first unit, is in contact with the first electrode, and contains a second organic compound and a third organic compound.
Abstract:
A high-resolution light-emitting apparatus that emits blue light with a high blue index is provided. The light-emitting apparatus includes a pixel electrode A; a pixel electrode B adjacent to the pixel electrode A; a common electrode; an EL layer A sandwiched between the pixel electrode A and the common electrode; an EL layer B sandwiched between the pixel electrode B and the common electrode; and an insulating layer positioned between the common electrode and each of the EL layer A and the EL layer B. The insulating layer has an opening portion A overlapping with the pixel electrode A and an opening portion B overlapping with the pixel electrode B. The EL layer A includes a light-emitting layer A. The light-emitting layer A contains a light-emitting substance A. The light-emitting substance A emits blue light. The EL layer A is in contact with the pixel electrode A. The EL layer B is in contact with the pixel electrode B. The EL layer A is in contact with the common electrode in the opening portion A. The EL layer B is in contact with the common electrode in the opening portion B.
Abstract:
A light-emitting device having high heat resistance in a manufacturing process is provided. Provided is a light-emitting device which includes a second electrode over a first electrode with a first EL layer therebetween and in which the first EL layer includes at least a first light-emitting layer; a second EL layer is over the first EL layer; the second EL layer includes at least a second light-emitting layer, a first electron-transport layer, and a second electron-transport layer; the first electron-transport layer is over the second light-emitting layer; an insulating layer is in contact with the side surface of the first light-emitting layer, the side surface of the second light-emitting layer, and the side surface of the first electron-transport layer; the second electron-transport layer is over the first electron-transport layer; the insulating layer is positioned between the second electron-transport layer and the side surface of the first light-emitting layer, the side surface of the second light-emitting layer, and the side surface of the first electron-transport layer; and the first electron-transport layer includes a heteroaromatic compound including at least one heteroaromatic ring and an organic compound different from the heteroaromatic compound.
Abstract:
An organic semiconductor device that can achieve high resolution and favorable reliability is provided. The organic semiconductor device is one of a plurality of light-emitting devices formed over an insulating layer, which includes a first electrode, a second electrode, and an organic compound layer. The organic compound layer is positioned between the first electrode and the second electrode. The organic compound layer includes a layer containing a first compound. When differential scanning calorimetry is performed on the first compound in such a manner that a cooling step is performed from the state in which the first compound is melted in a first heating step and a second heating step is successively performed, an exothermic peak is not observed in the cooling step and an exothermic peak and a melting point peak are not observed in the second heating step.