Abstract:
Methods and apparatuses are provided for receiving system information by a user equipment (UE). System information including first partial bits of a system frame number (SFN) and bandwidth information are received at a first subframe of a radio frame. The system information is identical during a broadcast channel transmission period. Second partial bits of the SFN are acquired having a different value in each of radio frames within the broadcast channel transmission period.
Abstract:
A method for transmitting terminal capability information in a communication system supporting a plurality of carriers is provided. The method includes transmitting a control message including terminal capability information, wherein the terminal capability information includes at least one of an information element (IE) indicating whether to support a multi-bearer, an IE indicating whether to support a secondary cell group (SCG) bearer, or an IE indicating whether to support dual connectivity (DC).
Abstract:
Methods and apparatuses are provided for establishing time alignment by a terminal in a mobile communication system. Information for identifying a preamble on a downlink control channel is received from a base station. The preamble is transmitted to the base station based on the information for identifying the preamble. A response message including timing adjustment information, information for a channel quality indicator (CQI) request, and uplink resource information on a downlink shared channel is received from the base station. The time alignment is established based on the timing adjustment information included in the response message. A CQI is transmitted based on the information for the CQI request and the uplink resource information.
Abstract:
Methods and apparatuses are provided for establishing time alignment by a terminal in a mobile communication system. First information for discontinuous reception (DRX) operation is received from a base station. A downlink control channel is monitored based on the first information. Second information for identifying a dedicated preamble on the downlink control channel is received from the base station. The dedicated preamble is transmitted to the base station based on the second information. A response message to the transmitted dedicated preamble is received from the base station on a downlink shared channel. The response message includes timing adjustment information and third information for a channel quality indicator (CQI) report. Time alignment is established based on the timing adjustment information included in the response message. The CQI report is transmitted to the base station based on the third information.
Abstract:
A method for transmitting packet data units Packet Data Units (PDUs) at a PDU transmitter in a communication system is provided. The method includes transmitting a first PDU comprising a PDU header and a data portion, receiving Negative Acknowledgement NACK information for the first PDU, segmenting the first PDU to form one or more PDU segments if a size of a second PDU for retransmission is smaller than a size of the first PDU, wherein each of the one or more PDU segment comprises a PDU segment header and a data portion, and transmitting the one or more PDU segment to a PDU receiver.
Abstract:
A method for performing a random access procedure by a User Equipment (UE) in a mobile communication system includes transmitting a preamble for identifying the UE, through a first message; receiving a second message from an Evolved Node B (ENB) in response to the first message, the second message including uplink (UL) transmission resource information for transmitting at least one of a transparent Radio Resource Control (RRC) message which is an RRC message that a UE having no RRC control connection transmits for the first time, and Buffer Status Report (BSR) information indicating an amount of UL data; setting a format indicator indicating if the transparent RRC message or the BSR information is included in a third message; and generating the third message according to the set format indicator, and transmitting the generated third message according to the UL transmission resource information.
Abstract:
A method and a transmitter are provided for performing packet ARQ in a communication system. A first RLC PDU is generated. The first RLC PDU includes polling information having a predetermined bit, when there is no subsequent RLC PDU transmission after transmission of the first RLC PDU. A timer is started or restarted when the first RLC PDU is transmitted to a receiver. The polling information having a predetermined bit is transmitted when the timer expires.
Abstract:
Methods and apparatuses are provided in which a user equipment (UE) receives a system information block (SIB) from a network. The UE identifies at least one downlink (DL) period based on a first uplink (UL)/DL configuration included in the SIB. The UE monitors a physical downlink control channel (PDCCH) during the at least one DL period using a discontinuous reception (DRX) operation. The UE obtains downlink control information (DCI) for indicating at least one second UL/DL configuration as a format for one or more time intervals from the monitored PDCCH. The UE determines the format for the one or more time intervals based on the obtained DCI. The monitoring of the PDCCH includes monitoring the PDCCH in an active time of a DRX cycle. The active time includes a time when the UE performs continuous reception.
Abstract:
Disclosed in a method of discontinuous data reception in a mobile communication system. The method includes: receiving downlink data and decoding the received downlink data by the UE; when the decoding is not successful, starting a timer for receiving retransmitted data; when the downlink data has been received by a configured downlink assignment, operating a downlink carrier, through which the downlink data has been received, in an active time; and when the downlink data has been received by a dynamic transmission resource and the downlink carrier, through which the downlink data has been received, is different from a downlink carrier, through which a scheduling command for the downlink data has been received, operating the downlink carrier, through which the scheduling command for the downlink data has been received, and the downlink carrier, through which the downlink data has been received, in an active time.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. Disclosed is a method by which a terminal performs a random access, comprising: receiving, from a serving base station, a handover command including configuration information indicating a dedicated random access resource and a common random access resource determining whether to perform a random access by using at least one of the dedicated random access resource and the common random access resource according to predetermined criteria; and performing the random access on the basis of the determination result.