摘要:
The amorphous silicon layer overlaps the gate electrode and the edges of the amorphous silicon layer are substantially encompassed by the edges of the gate electrode. The distance between the edges is at least 2 microns. Accordingly, both the light obliquely incident on the amorphous silicon layer from the outside once the light normally incident on the amorphous silicon layer is blocked by the gate electrode. Insulation layers, which are separated from the amorphous silicon layer and made of an amorphous silicon, are interposed between the edges of the source/drain electrodes and the gate electrode to reinforce the insulation between the gate electrode and the source/drain electrodes and also to absorb the light reflected by the source/drain electrodes and the gate electrode. The source electrode may partially surround the drain electrode in annular shape, to reduce the parasitic capacitance generated between the gate electrode and the drain electrode. The amorphous silicon layer may protrude out the gate electrode near the edges of the gate electrode which encompasses a source electrode and the source/drain electrodes. The amorphous silicon layer covers the edges of the gate electrode which encompasses the source electrode. The source electrode may be curved to prolong the distance between the drain electrode and the portion of the amorphous silicon layer.
摘要:
A display apparatus may include touch detection circuitry including a light sensing circuit and a physical parameter sensing circuit (e.g., a pressure sensing circuit). The display apparatus may further include processing circuitry implementing a power-saving mode and a normal mode, and configured to generate touch information. An display driver may include a photo sensing circuit and a pressure sensing circuit. An embodiment of the display driver may include: an amplifying unit amplifying a photo sensing signal and a pressure sensing signal; a parallel-to-serial converting unit converting the amplified photo sensing signal and the amplified pressure sensing signal into serial sensing signals; and an analog-to-digital converter converting the serial sensing signals into digital sensing signals, wherein the amplifying unit, the parallel-to-serial converting unit, and the analog-to-digital converter operate in one of a normal mode and a power saving mode according to the pressure sensing signal.
摘要:
The amorphous silicon layer overlaps the gate electrode and the edges of the amorphous silicon layer are substantially encompassed by the edges of the gate electrode. The distance between the edges is at least 2 microns. Accordingly, both the light obliquely incident on the amorphous silicon layer from the outside once the light normally incident on the amorphous silicon layer is blocked by the gate electrode. Insulation layers, which are separated from the amorphous silicon layer and made of an amorphous silicon, are interposed between the edges of the source/drain electrodes and the gate electrode to reinforce the insulation between the gate electrode and the source/drain electrodes and also to absorb the light reflected by the source/drain electrodes and the gate electrode. The source electrode may partially surround the drain electrode in annular shape, to reduce the parasitic capacitance generated between the gate electrode and the drain electrode. The amorphous silicon layer may protrude out the gate electrode near the edges of the gate electrode which encompasses a source electrode and the source/drain electrodes. The amorphous silicon layer covers the edges of the gate electrode which encompasses the source electrode. The source electrode may be curved to prolong the distance between the drain electrode and the portion of the amorphous silicon layer.
摘要:
A device of driving a display device according to an embodiment of the present invention is provided. The display device includes a plurality of display circuits, a plurality of sensing circuits, and a plurality of data lines connected to the display circuits and the sensing circuits. The driving device includes: an image data driver converting image signals into image data signals and applying the image data signals to a first set of the data lines; a sensing signal processor receiving analog sensor data signals from a second set of the data lines and processing the sensor data signals to generate digital sensor data signals; and a signal controller receiving the image signals from an external device and controlling the image data driver and the sensing signal processor, wherein the image data driver, the sensing signal processor, and the signal controller are integrated in a single integrated circuit chip.
摘要:
A display device according to an embodiment of the present invention includes a display panel having a first display area and a second display area. The display panel includes: a plurality of first display circuits disposed in the first display area; a plurality of second display circuits disposed in the second display area; and a plurality of touch sensing circuits disposed in the second display area.
摘要:
A display device is disclosed which includes: a display panel; a lighting unit to illuminate the display panel and having a state in response to a lighting control signal; a pressure sensing unit generating a first sensor output signal according to a touch on the display panel; a light sensing unit receiving light from the lighting unit and ambient light and generating a second sensor output signal according to the touch on the display panel; a sensor scanning driver outputting sensor scanning signals to the pressure sensing unit and the light sensing unit in response to a sensor scanning control signal; and a sensing controller generating the lighting control signal and the sensor scanning control signal based on the first and the second sensor output signals and outputting the lighting control signal to the lighting unit and the sensor scanning control signal and the sensor scanning driver.
摘要:
A display device includes: a plurality of pixels; a signal controller generating data accumulations for current image data for the pixels based on an accumulation of input image data, calculating modification coefficients according to the data accumulations, and modifying the current input image data based on the modification coefficients to generate modified image data; and a data driver generating data voltages corresponding to the modified image data and supplying the data voltages to the pixels.
摘要:
A display device includes a panel assembly, a backlight unit supplying light to the panel assembly, a first photosensor, a second photosensor, a sensing signal processor and a signal controller. The first photosensor is supplied with ambient light and light from the backlight unit to generate a first sensing signal. The second photosensor is blocked from the ambient light and receives the light from the backlight unit to generate a second sensing signal. The sensing signal processor receives the first and the second sensing signals from the first and the second photosensors for processing. The signal controller determines a sensing state responsive to processed first and second sensing signals from the sensing signal processor and performing a predetermined control operation responsive to the sensing state.
摘要:
The present invention provides an improved connection for circuit substrates. The circuit substrates are connected at concave and convex portions at their ends. The concave portion is formed such that the inside width is larger than the entrance width. The convex portion fits into the concave portion. Thereby, a connected portion of the circuit substrates has increased tensile strength. Furthermore, abnormality of the connected portion of the circuit substrates may be easily perceived.
摘要:
A liquid crystal display (LCD) device includes a first substrate, a second substrate spaced apart from the first substrate and a liquid crystal layer interposed between the substrates. A sensing controlling section is also included in the LCD device. The second substrate includes a sensing array that senses a change in a sensing voltage responsive to a change in a thickness of the liquid crystal layer. The sensing controlling section detects a touch position data by comparing a reference voltage that changes according to a change in temperature with a variation voltage that corresponds to a difference between the sensing voltage and an initial voltage corresponding to an initial thickness of the untouched liquid crystal layer.