摘要:
An object is to inhibit a refrigerant leakage and enhance a performance of a compressor. The compressor comprises a driving element stored in a sealed container of the compressor, and a compression element driven by a rotary shaft of the driving element. This compression element comprises a cylinder in which a compression space is constituted; a suction port and a discharge port which communicate with the compression space in the cylinder; a compression member whose one surface crossing an axial direction of the rotary shaft is inclined continuously between a top dead center and a bottom dead center and which is rotatably disposed in the cylinder and which compresses a fluid (refrigerant) sucked from the suction port to discharge the fluid via the discharge port; and a vane which is disposed between the suction port and the discharge port to abut on an upper surface as one surface of the compression member and which partitions the compression space in the cylinder into a low pressure chamber and a high pressure chamber, and one surface of the compression member is disposed on a side opposite to the driving element.
摘要:
The present invention relates to a multicylinder rotary compressor and a compressing system and a refrigerating unit each provided with the multicylinder rotary compressor. Two-stage (cylinder) rotary compressor provides a motor-operating element and a rotary compressing element in a closed vessel, and the rotary compressing element includes a first rotary compressing element and a second rotary compressing element. This two-stage rotary compressor provides a refrigerant gas switching means comprised of a communicating pipe one end of which is opened in the closed vessel and the other end of which is opened in a back pressure portion for a vane having no spring in the second rotary compressing element, a branch pipe provided in the midway portion of this communicating pipe and a three-way valve attached to a branch point in the branch pipe. Further, a through hole in the second rotary compressing element is closed with a sealing member. During high rotation speed a high pressure refrigerant gas, which flows from the closed vessel to the communicating pipe is supplied to the back pressure portion for the vane so that the second rotary compressing element is made in an operation mode, and during low rotation speed the high pressure refrigerant gas is relieved through the branch pipe so as not to supply the back pressure portion for the vane with the refrigerant gas, whereby the second rotary compressing element is made in a non-operation mode. The present invention forms a compressing system and a refrigerating unit each using the two-stage rotary compressor.