Abstract:
A high resistivity wafer with a heat dissipation structure includes a high resistivity wafer and a metal structure. The high resistivity wafer includes a heat dissipation region and a device support region. The high resistivity wafer consists of an insulating material. The metal structure is only embedded within the heat dissipation region of the high resistivity wafer. The metal structure surrounds the device support region.
Abstract:
A method for fabricating semiconductor device comprising the steps of: forming a first trench and a second trench in a substrate; forming a liner in the first trench and the second trench; forming a first patterned mask on the substrate to cover the second trench; removing the liner in the first trench; removing the first patterned mask; and forming an insulating layer in the first trench and the second trench to form a trap rich isolation structure in the first trench and a deep trench isolation structure in the second trench.
Abstract:
A method for fabricating semiconductor device comprising the steps of: forming a first trench and a second trench in a substrate; forming a liner in the first trench and the second trench; forming a first patterned mask on the substrate to cover the second trench; removing the liner in the first trench; removing the first patterned mask; and forming an insulating layer in the first trench and the second trench to form a trap rich isolation structure in the first trench and a deep trench isolation structure in the second trench.
Abstract:
A semiconductor structure includes a SOI/BOX semiconductor substrate, a device, a deep trench, a silicon layer, and a dielectric layer. The deep trench is adjacent to the device and extends through a shallow trench isolation layer within the SOI layer and the BOX layer and into the base semiconductor substrate. The silicon layer is disposed within a lower portion of the deep trench. The silicon layer has a top surface height substantially the same as or lower than a top surface height of the base semiconductor substrate. The dielectric layer is disposed within the deep trench and on the silicon layer. The deep trench can be formed before or after formation of an interlayer dielectric.