摘要:
Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.
摘要:
A method for selecting a target vein for left ventricular lead placement for cardiac resynchronization therapy includes determining electrical dispersion for the first coronary vein by calculating the difference between (i) activation time at a location of the vein that has the latest activation time of a plurality of locations in the vein and (ii) activation time at a location that has the earliest activation time of the plurality of locations. The method may further include (ii) determining whether the magnitude of the electrical dispersion for the vein meets or exceeds a predetermined threshold selecting the vein if the vein meets or exceeds the predetermined threshold; or (ii) selecting, among several veins, the vein that has the highest electrical dispersion.
摘要:
A method for selecting a target vein for left ventricular lead placement for cardiac resynchronization therapy includes determining electrical dispersion for the first coronary vein by calculating the difference between (i) activation time at a location of the vein that has the latest activation time of a plurality of locations in the vein and (ii) activation time at a location that has the earliest activation time of the plurality of locations. The method may further include (ii) determining whether the magnitude of the electrical dispersion for the vein meets or exceeds a predetermined threshold selecting the vein if the vein meets or exceeds the predetermined threshold; or (ii) selecting, among several veins, the vein that has the highest electrical dispersion.
摘要:
Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.
摘要:
An implantable medical device uses an implantable sensor for acquiring a physiological signal that is received by a digital signal processor. The digital signal processor is a multi-channel signal processor including a first signal processing channel having a first sensitivity for sensing the physiological signal and a second signal processing channel having a second sensitivity different than the first sensitivity for sensing the physiological signal.
摘要:
A method and apparatus for determining a T-wave shock interval sense a cardiac electrogram (EGM) signal comprising a T-wave signal. A T-wave center is determined from the EGM signal, and a T-wave shock interval is determined in response to determining the T-wave center. A T-wave shock is delivered at the T-wave shock interval computed based on the T-wave center.
摘要:
An implantable medical device and associated method for automatically generating morphology templates during fast cardiac rhythms, confirming a provisional template as a confirmed template, and using the confirmed template to classify subsequent detected arrhythmias. A provisional SVT template may be created during a fast ventricular rate and activated as a confirmed SVT template upon verification that the fast rate was due to an SVT. The confirmed SVT template may be used to discriminate SVT from VT/VF.
摘要:
An implantable medical device system and method detect oversensing of cardiac signals. A cardiac signal including first events and second events is acquired. Cardiac events are sensed in response to the cardiac signal crossing a first threshold. A filtered cardiac signal is determined from the sensed cardiac signal, and a second threshold is determined from the filtered cardiac signal. A sensed cardiac event is classified either as a first event when the sensed cardiac event corresponds to a filtered cardiac signal peak crossing the second threshold or a second event when the sensed cardiac event corresponds to a filtered cardiac signal peak being less than the second threshold. Classification of sensed cardiac events as second events is used in determining oversensing.
摘要:
An extra-systolic stimulation (ESS) therapy addresses cardiac dysfunction including heart failure. ESS therapy employs atrial and/or ventricular extra-systoles via pacing-level stimulation to a heart. These extra-systoles must be timed correctly to achieve beneficial effects on myocardial mechanics (efficacy) while maintaining an extremely low level of risk of arrhythmia induction and excellent ICD-like arrhythmia sensing and detection (security). The present invention relates to therapy delivery guidance and options for improved ESS therapy delivery. These methods may be employed individually or in combinations in an external or implantable ESS therapy delivery device.
摘要:
The invention is directed to method and process for discriminating supraventricular tachycardia (SVT) with 1:1 atrial to ventricular conduction (AV conduction). Upon detection of a rapid heart rate, an implanted medical device may determine whether the rhythm exhibits insufficient evidence of sinus tachycardia, whether the rhythm exhibits 1:1 conduction, and whether an electrical signal corresponding to the rhythm exhibits a normal morphology. When these tests have been satisfied, the device determines that an SVT with 1:1 AV conduction has been detected.