Abstract:
A method, system and apparatus for synchronizing an analog video signal to an LCD monitor is described. For each of a succession of associated video frames are surveyed for a number of displayed features based upon a pseudo-random selection of regions into which the displayed video frame is divided. During successive associated video frames, a minimum number of features each is which is generated by an associated pixel clock is determined based upon a pre-selected number of scans. Subsequent to the determination of the minimum number of features, a transition region for each of plurality of horizontal resolution values is determined by scanning through a selected number of pixel clock phases. Based upon a minimum transition zone corresponding to a maximum change in the number of features for a particular pixel clock phase, an associated horizontal resolution is provided.
Abstract:
In digital display circuitry, configured to display an image encoded in an analog display signal, the digital display circuitry includes analog-to-digital converter (ADC) circuitry to recover pixel data elements of the image. During vertical blanking intervals of the analog display signal, the ADC circuitry is calibrated. Outside the vertical blanking intervals, the ADC circuitry is used to convert information in the analog display signal into digital representations of the pixel data elements. For example, the calibrating may include determining more acceptable values for certain ones of the operational parameters of the ADC circuitry.
Abstract:
Disclosed is a method for generating transfer curves for adaptive contrast enhancement. Given an input image, a luminance histogram is generated based on a set of predefined input luminance ranges. The luminance histogram is then expressed as a weighted sum of a set of predefined “primitive” histograms. Each primitive histogram has an associated reference transfer curve. A final transfer curve is produced as a corresponding weighted sum of the associated reference transfer curves. The image luminance can then be adjusted according the to the final transfer curve, resulting in enhanced image contrast. The disclosed method enables expansion of the number of available reference transfer curves without increasing the number of luminance ranges.
Abstract:
In a VESA standard compliant display controller having a processor arranged to process executable instructions and associated data, a memory device arranged to store EDID and the executable instructions and associated data, a number of data ports coupled to the memory device by way of an 12C data bus each coupled to a host device, a method of transferring EDID from the memory device over the 12C data bus to a requesting one of the data ports while servicing a processor memory access request without clock stretching.
Abstract:
Frequency content motion detection is performed by decomposing a raw field luminance data in to a number of frequency content sub-bands, detecting motion using the raw field luminance data in parallel with the decomposing, generating a motion correction value by multiplying absolute values of the sub-bands by weighting factors, and applying the motion correction value to detected motion.
Abstract:
Reducing fast motion artifacts in an LCD panel by receiving a video stream at a first frame rate which is then downsampled to a second frame rate. The downsampled video stream is then upsampled to a third frame rate and a voltage is applied to a pixel element such that the pixel element transitions from a first pixel value to a predetermined second pixel value within a period of time consistent with the third frame rate.
Abstract:
Pixel clock frequency and optimum sampling phase adjustment is an important requirement in Flat panel display monitors (FPDM) with an analog video interface. This invention proposes a new and more advanced method for frequency an optimum sampling phase determination. It is based on analyzing the content of the image to arrive at an optimum value of phase and frequency by directly optimizing image quality. The method differs from exsisting methods on two counts. First, no assumptions are needed about the precise value of expected frequency. Second, instead of following a two step approach of first determining frequency and then phase, this invention makes possible a single pass phase-frequency optimization.
Abstract:
A processor having a limited amount of local memory for storing code and/or data utilizes a program stored in external memory. The program stored in external memory is configured into blocks which can be loaded individually into the local memory for execution. Queuing the individual blocks of code allows the program to be executed by the processor and also facilitates loading of the subsequent code to be executed. A semaphore system can be utilized to indicate which blocks of local memory are available/unavailable. The system can support the interaction of multiple independent programs in external memory.
Abstract:
A method and apparatus of optimizing transmission (both real time and continuous) of a number of multimedia data packets between a multimedia source device and a multimedia display device is disclosed. In the described embodiment, the multimedia source device and the display device are coupled by way of a unidirectional main link arranged to carry the multimedia data packets from the multimedia source device and the multimedia display device and a bi-directional auxiliary channel arranged to transfer information between the multimedia source device and the multimedia display device. The method can be carried out by following at least the following operations. Providing a test pattern by the multimedia source device on the main link, determining a transmission quality factor of the main link based upon the test pattern, and optimizing the transmission of the multimedia data packets based upon the transmission quality factor.
Abstract:
A decimator for effecting a X:1 decimation, where X=is any positive integer greater than 1, comprising a FIR filter for receiving and filtering an input stream of data bits and in response generating a like number of filtered output data bits; and a hold circuit for sampling and outputting every Xth one of the filtered output data bits.