Abstract:
A combination handpiece and surgical laser tool is disclosed for use in laser surgery. The handpiece comprises a hollow body having an internal wall which is mounted about the probe of the laser tool. A layer which contains optical fibers is mounted about the internal wall with the fibers have outlet ends at the tip of the handpiece. A light source directs visible white light along the fibers with the light being projected in a pattern which illuminates a portion of an anatomical structure in a path about a spot at which the laser beam impinges. In one embodiment a handpiece is releasably fitted about the laser tool so that the handpiece can be detached and used as a flashlight to explore the wound. In another embodiment the optical fibers are formed into discrete clusters which are spaced about the circumference of the annular layer of the handpiece. Visible light can then be projected from the clusters in discrete spots about the laser beam.
Abstract:
A medical system for transmitting and delivering to a tissue site multiwavelength therapeutic radiant energy along a common optical pathway. Also included is a laser catheter suitable for engaging multiple sources of laser energy and transmitting multiwavelength therapeutic laser energy along a common optical path for delivery to a worksite.
Abstract:
An improved dental procedure and apparatus where ultraviolet radiation pulses are used to etch selectively both hard tissue and soft tissue in dental procedures. There exists distinct ablation thresholds for hard and soft tissue which are dependent on the material being ablated for a given wavelength of the ultraviolet radiation. Sufficient differences in ablation threshold exist for enamel, dentin, and carious material, thereby allowing dentists to perform both hard tissue and soft tissue procedures without excess damage to healthy enamel, dentin or other pulp structures.
Abstract:
A laser delivery system which may be coupled to a stereomicroscope or camera equivalent, may be three dimensionally positioned such that a laser beam may irradiate a wide range of treatment sites from a variety of angles and distances, and where the laser beam may be positioned at an angle to the viewing axis and track along therewith. A laser delivery system including a filter/mirror system which allows only proper wavelengths to be transmitted.
Abstract:
A medical laser delivery system usable to transmit laser energy from a laser energy source to a surgical site of a patient. The delivery system includes a handpiece adapted for rotatable coupling to a delivery arm coupled to the laser energy source such that the handpiece is rotatable about its longitudinal axis with respect to the delivery arm. A distal delivery system is coupled to the handpiece and delivers laser energy to the surgical site when the laser energy source is actuated. The handpiece includes a handpiece body adapted for rotatable coupling to the delivery arm and a handpiece head coupled to both the handpiece body and the distal delivery system. The handpiece head can be rotatably coupled to the handpiece body. In one embodiment, the handpiece head is angularly oriented at a fixed angle with respect to the handpiece body. In an alternative embodiment, the handpiece head is pivotally coupled to the body such that the handpiece head may be adjusted to various angles with respect to the handpiece body, such pivotal coupling preferably being accomplished by a ball and socket joint. A removable fiber extension is positioned within the handpiece and transmits laser energy from a fiber in the delivery arm to the distal delivery system. The distal delivery system includes an interchangeable delivery tip through which the laser energy is delivered to the surgical site. The tip can be a solid or hollow fiber of various sizes and shapes.
Abstract:
An apparatus for accurately positioning a laser tool at multiple distances relative to an object to be treated with the laser tool comprises an adjustable distance guide such as a flat body, an adaptor for securing the flat body to the laser tool and an adjustable incremented member which can be selectively, resiliently disposed at various predetermined lengths projecting away from the flat body. The positioning apparatus may be provided in a kit together with a set of predetermined, standardized specifications for using the apparatus together with the laser tool for achieving various different treatment effects, and a set of blank forms for generating additional specifications. A method is disclosed for utilizing such kit.
Abstract:
A method and device are provided for directing laser radiation to a body cavity site. A hollow, elongate, optical fiber is advanced, usually in a containing device, to the vicinity of the site and coupled to a laser source with a distal end region of the fiber extending along a longitudinal axis. The fiber terminates in an energy delivery surface for emitting laser radiation transmitted by the fiber. The radiation is intercepted at a location axially aligned with the energy delivery surface and is reflected in a beam radiating substantially transversely of, and substantially circumferentially around, the axis. A reflector member or block is provided for reflecting the radiation and is mounted in an open end of the catheter at a selected axial position along the axis. A fluid, such as a flushing fluid, can be directed between the end of the fiber, against the reflector member, and to the body site.
Abstract:
A decoupled dual-beam control system for a compact micromanipulator unit for a surgical laser system includes a focusing mechanism for focusing a first laser beam of a first wavelength at a predetermined focal point; and a control mechanism for directing a second laser beam of a second wavelength onto the focusing mechanism; the control mechanism includes a device for varying the diameter and wavefront of the second laser beam at the focusing mechanism for enabling the focusing mechanism to focus the second beam in the same focal plane as the first beam. The control mechanism further includes a device for translating the second beam relative to the focusing mechanism for enabling the focusing mechanism to coincidentally position the foci of the surgical and aiming beams in the focal plane.
Abstract:
A proximity detector for the probe of a beam delivery apparatus of a laser system includes a probe having a face for confronting a target surface to be struck by the laser beam; means for directing a gauging light to the target surface; means for sensing the gauging light returning from the target surface to the probe; and means responsive to the means for sensing for generating a control signal representative of the position of the probe relative to the surface to enable the laser system to fire.
Abstract:
An optical system for use in a medical laser apparatus comprising an achromat having optical elements selected to cause two substantially different wavelengths, one visible and one infrared, to focus at a common focal point. The achromat comprises a negative lens and a doublet lens formed of a positive bi-convex lens and a negative meniscus lens. The materials of the two lenses which form the doublet have substantially different dispersions and indices of refraction and are chosen to cause a visible helium neon beam and an infrared carbon dioxide beam to focus at the same point. In the preferred embodiment of the present invention, the negative lens is made of zinc selenide, the bi-convex lens of the doublet is made of potassium chloride, and the negative meniscus is made of zinc selenide. The optical system of the present invention can be mounted in a micromanipulator for use in laser surgery. The visible helium neon beam is used as an aiming beam to establish a spot at which the carbon dioxide beam also focuses. The carbon dioxide beam is then employed to vaporize biotic material. A distal end of an articulated arm may couple with the micromanipulator to direct the carbon dioxide beam from the laser through a waveguide and into the micromanipulator. Another aspect of the invention includes introducing the aiming beam into the waveguide through a dichroic mirror positioned in a knuckle joint of the articulated arm. In one embodiment, a laser diode generates the visible light of the aiming beam, and is disposed proximate to the distal end of the articulated arm.