Abstract:
A ring filter element, e.g., for a liquid filter device, is disclosed. The ring filter element includes an upper end disc, a lower end disc, and a filter material arranged in between the upper end disc and the lower end disc. A pin eccentrically arranged on the lower end disc that projects in an axial direction is provided for closing off a drainage channel. At least one support contour is disposed on the lower end disc adjacently to the pin. The at least one support contour projects from the lower end disc in the axial direction for supporting on a filter housing.
Abstract:
A filtering device includes multiple filtering elements (3) with bodies defining longitudinal axes. The filtering elements (3) are arranged adjacent to one another in a housing such that the longitudinal axes extend parallel to one another. The bodies of at least some of the filtering elements (3) have a shape that deviates from a circular cylinder at at least one part of the body length. The filtering elements (3) with bodies having a shape deviating from a circular cylinder have a cross-sectional size at least partially changing from one end to the other end. The filtering elements are oriented in the housing such that the regions of a larger cross-section are associated with the regions of a smaller cross-section in adjacent filtering elements.
Abstract:
Disclosed is filter having a filter core, a top cover, a bottom cover, at least one first discharging pipe and at least one second discharging pipe, wherein the filter core has a slot through which a fluid to be filtered passes; the top cover and the bottom cover are respectively fixed to an upper portion and a lower portion of the filter core; an inner wall surface of the filter core, an inner wall surface of the top cover and an inner wall surface of the bottom cover define a filter cavity; the first discharging pipe has at least one first inlet through which the fluid flows in; the second discharging pipe has at least one second inlet through which the fluid flows in; and all the first inlets are situated above the second inlets in the gravity direction. The filter can realize the separation of two fluids.
Abstract:
A high capacity suction strainer for a nuclear reactor has a frame, a flow-through plenum, and a filter array. The flow-through plenum is mechanically mounted to the frame and has a plurality of inlets and an outlet. The filter array is also mechanically mounted to the frame and has a plurality of filter groupings in fluid communication with the inlet on the plenum.
Abstract:
A strainer system comprises a strainer housing having an inlet for raw fluid and an outlet for strained fluid; a generally cylindrical strainer basket having a strainer screen and disposed within the housing, the external surface of the strainer screen being in flow communication with the raw fluid inlet and the internal surface of the strainer screen being in flow communication with the strained fluid outlet; a backwash collector assembly comprising a backwash conduit having an opening disposed adjacent the outer surface of the strainer screen, the backwash conduit and the strainer basket being moveable relative to each other, so as to allow the opening to pass across the external surface of the strainer screen. A method of straining a fluid, in particular a liquid, is also provided. Finally, a valve assembly for use in the selective opening and closing of a plurality of backwash conduits is disclosed.
Abstract:
A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.