Abstract:
The present invention relates to a process for manufacturing a single-crystal turbomachine nozzle guide vane comprising an airfoil between two platforms, by pouring molten metal into a shell mold followed by directional solidification, the front of which advances vertically upward, from a single crystal provided by a single-crystal grain provider device placed in the lower portion of the mold and having a predetermined orientation, the [001] direction coinciding with the vertical, the volumes of the mold forming the platforms being oriented in a plane parallel to the [001] direction of said single crystal and the volume of the mold forming the airfoil comprising a lower edge, the device providing the single-crystal grain emerging in a grain duct forming a connection between said device and the lower ends of the platforms, the grain duct being shaped so as to comprise two branches for feeding the platforms and a web-shaped volume extending between said feed branches, the platforms and the lower edge of the airfoil, wherein the upper edge of the volume forming the airfoil is inclined to the horizontal direction.
Abstract:
The invention relates to a method for producing magnetically active shape memory metal alloy, said metal alloy containing nickel, manganese and gallium. In the method, the different components of the metal alloy are melted, and the melt is homogenized essentially at the melting temperature; the obtained metal alloy is cast, and the cast metal alloy is subjected to directional solidification at 10-100° C. below the liquidus temperature of said metal alloy.
Abstract:
Molten metal is injected uniformly into a horizontal mold from a feed chamber in a horizontal direction at a controlled rate, directly on top of the metal already within the mold. A cooling medium is applied to the bottom surface of the mold, with the type and flow rate of the cooling medium being varied to produce a controlled cooling rate throughout the casting process. The rate of introduction of molten metal and the flow rate of the flow rate of the cooling medium are both controlled to produce a relatively uniform solidification rate within the mold, thereby producing a uniform microstructure throughout the casing, and low stresses throughout the casting.
Abstract:
To produce a hydrogen storage alloy by melting a hydrogen storage alloy having a body-centered cubic crystal structure without using a refractory crucible and solidifying a molten alloy by a unidirectional solidification process. The unidirectional solidification is carried out by a cold crucible induction melting method at a moving speed of a solid-liquid interface in the range of 10 to 200 mm/hr by using a water-cooled metal crucible in a vacuum or an inert gas atmosphere.
Abstract:
A method for removing casting defects (5) from an article (1) with an oriented microstructure can include locating at least one casting defect (5) and melting the casting defect (5) locally by a heat source (7) to a depth at least as great as the casting defect (5) itself. The molten material can then be solidified epitaxially with respect to the surrounding oriented microstructure of the article (1) in a way that the resulting solidified area is substantially free of any defect.
Abstract:
A system for producing cast components from molten metal. One form of the present invention includes a system for the precision pouring of molten metal within a casting mold.
Abstract:
An arrangement 10 for providing thermal energy to a portion 16 of a component 14 of a gas turbine engine while the component 14 is forming, wherein the component 14 is substantially elongate in a first direction 28 and the portion 16 extends from the component 14 in a second direction 38, substantially perpendicular to the first direction 28, and comprises a first surface area component 32 oriented in the first direction 28. The arrangement 10 further comprising an elongate member 18, connected to the portion 16 for heating the portion 16, wherein the elongate member 18 comprises a second surface area component 36, oriented in the second direction 38, wherein the second surface area component 36 of the elongate member 18 is greater than the first surface area component 32 of the portion 16.
Abstract:
The present invention contemplates a multi-airfoil vane segment produced as a single crystal casting from a rhenium containing directionally solidified alloy. The single crystal casting containing grain boundary strengtheners.
Abstract:
A baffle includes a base and a seal having flexible segments which engage a mold structure. The base of the baffle may have a noncircular opening in which article mold portions of the mold structure are disposed. The baffle may be connected with the furnace assembly before a mold is moved into the furnace assembly or may be connected with the furnace assembly as the mold is moved into the furnace assembly. A projection connected with the mold structure may be utilized to orient the baffle relative to the mold structure. The projection may be a thermocouple assembly which extends from the chill plate. Alternatively, the projection may be a portion of the mold structure itself.
Abstract:
The present invention relates to an apparatus for metal casting and can be used in producing castings with directional and single crystal structure. The apparatus comprises a vacuum chamber inside which there is disposed an induction melting furnace, a mold preheating furnace with a ceramic mold, and a water-cooled tank being shaped as a truncated cone having a bottom portion and an upper portion which is opened towards a heating zone. The heating zone and the cooling zone are separated by a baffle articulating in a horizontal plane and consisting of segments or sectors. The apparatus allows the production of high quality castings having the directional and single crystal structure including the large sized castings by both the method of radiation cooling and the method of liquid metal cooling. Said invention gives the possibility to use successively the disclosed apparatus as a mold catch basin in the event of mold breakage and to increase the reliability and economic profitability of the apparatus' performance.