Abstract:
Lithographic printing plates are imaged using an inkjet printer to imagewise apply a chemical agent onto the plate surface. The chemical causes a change that facilitates lithographic printing.
Abstract:
Disclosed are a printing plate precursor, a fabrication process of the printing plate precursor, a fabrication process of a printing plate, a regeneration process of the printing plate, a printing press, and a coating formulation for the printing plate precursor. According to the present invention, a printing plate can be fabricated directly from digital data, and sufficient image quality can be obtained without a developing step, i.e., a developer. To permit repeated use of the precursor, the precursor has a surface, which contains a photocatalyst and is capable of showing hydrophilicity when exposed to activating light having energy higher than band gap energy of the photocatalyst. A coating formulation—which comprises fine particles of a thermoplastic resin having both a property that the particles unite to the surface when heated and a property that the particles decompose under action of the photocatalyst when exposed to activating light having energy higher than band gap energy of the photocatalyst—is applied as a hydrophobizing agent onto the surface. At least a part of the surface of the precursor is heated such that the fine particles applied on the part of the surface are fixed to form a hydrophobic image area. The fine particles applied on the remaining part of the surface with the image area formed thereon are then removed.
Abstract:
The invention provides a photosensitive composition including (A) a vinyl polymer containing a copolymerization component having a carboxyl group, having a content of the carboxyl group in a molecule of 2.0 meq/g or higher and having a solubility parameter less than 21.3 MPa1/2, (B) a polymer compound including a phenolic hydroxyl group, and (C) an IR absorber.
Abstract:
A method for preparing a negative-working lithographic printing plate is provided which comprises the steps of (1) providing a lithographic printing plate precursor comprising on a grained and anodized aluminum support, having a hydrophilic surface, a coating comprising (i) polymer particles which are core-shell particles having a hydrophobic heat-softenable core and a hydrophilic shell and (ii) an infrared light absorbing agent, (2) exposing said coating to heat, thereby inducing coalescence of said polymer particles at exposed areas of said coating, and (iii) developing said precursor by applying a gum solution to said coating, thereby removing non-exposed areas of said coating from said support. According to the above method the printing plates exhibit after ageing an improved clean-out and a reduced background stain, resulting in toning-free printing.
Abstract:
A polymer compound includes i) a polymerization unit represented by —(CHR3—CR4(-L1-Y1))x—(CHR5—CR6(-L2-Y2))y-; and ii) a silane coupling group represented by —S—(CH2)n—Si—(R1)m(OR2)3-m, as a terminal of the polymer, wherein R1, R2, R3, R4, R5, R6, n, x, y, L1, L2, Y1 and Y2 are defined in the specification. A lithographic printing plate base includes: a support; and a hydrophilic layer containing solid particles to a surface of which a hydrophilic polymer is chemically bonded.
Abstract:
A lithographic printing plate precursor comprising: a hydrophilic support; a photosensitive layer containing a sensitizing dye, a polymerization initiator, a chain transfer agent, a compound having an ethylenically unsaturated double bond and a polymer binder having a crosslinkable group; and a protective layer containing an inorganic stratiform compound, in this order.
Abstract:
The present invention provides a planographic printing plate precursor including a support and a positive recording layer formed on the support and containing: (A) a polymer having a structural unit represented by the following general formula (1), (B) a photo-thermal converting agent, and (C) an amino compound having a methylol group or an alkoxymethyl group; and a positive recording layer whose solubility in an alkaline developer is improved by exposure to light or by heating. In general formula (1), R1 represents an alkyl group or a cyclic group, x represents 0 or 1, and A represents a bivalent bonding group. According to the invention, a positive planographic printing plate precursor for use with infrared lasers having excellent chemical resistance and wide image development latitude can be obtained.
Abstract:
The present invention provides a polymerizable composition comprising (A) a compound represented by the following formula (I), (B) an infrared absorbent, and (C) a compound having at least one addition-polymerizable ethylenically unsaturated bond, and a negative planographic printing plate precursor having a recording layer containing the polymerizable composition. In the formula (I), R1, R2, R3, R4, R5, and R6 each independently represent a hydrogen atom or a monovalent organic group; and X− represents an anion.
Abstract:
A negative-working lithographic printing plate precursor is disclosed comprising on a support having a hydrophilic surface or which is provided with a hydrophilic layer, a coating comprising an infrared absorbing agent, a first layer comprising an aqueous dispersion comprising hydrophobic thermoplastic polymer particles and a first hydrophobic binder, and a second layer located between said first layer and said support which comprises a second hydrophobic binder, characterized in that said first hydrophobic binder is a phenolic resin and said second hydrophobic binder is a polymer comprising at least one sulphonamide group.
Abstract:
A method of light exposure recording on a planographic printing plate, wherein the planographic printing plate includes a support and an image recording layer provided on the support, the image recording layer includes a radical polymerization initiator, the method comprising: irradiating the image recording layer with a predetermined amount of a first light, whereby the radical initiator generates a radical, the radical is quenched by free oxygen in the image recording layer, so that free oxygen in the image recording layer is exhausted and disappears from the image recording layer and that the image recording layer is supersensitized; and then rradiating the image recording layer with a second light as a recording light modulated on the basis of image information, so as to form a latent image corresponding to the image information on the image recording layer. Also provided is an apparatus for practicing the invention.