Abstract:
A braking system (1) for an aircraft which includes a by-pass control system (9) for activation when undemanded braking or loss of braking is detected. The braking system (1) comprises: a brake pedal transducer (2) for generating a brake pedal actuation signal when a brake pedal (3) is applied; brake actuation means (5) for activating a brake (6) on receipt of a braking signal; braking pressure transducer means (7) for generating a braking output signal related to the braking force applied to the brake (6); primary processing means (4) in electrical communication with the brake pedal transducer (2) and the brake actuation means (5) and adapted to generate a braking signal on receipt of a brake pedal actuation signal; secondary processing means (8) adapted to receive the brake pedal actuation signal and braking output signal; and a bypass braking control system (9) adapted to receive the brake pedal actuation signal from the brake pedal transducer (2) and generate a braking signal in response to the brake pedal actuation signal. The secondary processing means (8) is adapted to disable the primary processing means (4) and enable the bypass braking control system (9) on detection of undemanded braking or loss of braking from the brake pedal actuation signal and braking output signal.
Abstract:
A slip angle differential value calculation unit 34 calculates a slip angle differential value of a body of a vehicle, a braking force application prohibiting unit 35 prohibits the application of braking force by a braking force application unit 33 when a yaw rate detection value takes a positive value and the sip angle differential value is a positive judgment threshold or more or when the yaw rate detection value takes a negative value and the slip angle differential value is a negative judgment threshold or less.
Abstract:
In a method for checking the proper functioning of a component in a vehicle by evaluating the system state of the component with the aid of a sensor, a state variable is measured first and then the measured state variable is examined for at least one characteristic feature that is descriptive of the system state of the component.
Abstract:
A brake control circuit for determining if a brake command from a brake pedal is valid is provided. The brake control circuit includes at least two independent channels configured to receive data indicative of brake pedal deflection for the brake pedal, and logic circuitry operatively coupled to the at least two independent channels. The logic circuitry is configured to generate a valid brake flag when the respective channels receive data that are within a predetermined range of one another, and to generate an invalid brake flag when the respective channels receive data that are not within a predetermined range of one another.
Abstract:
A system for electrical braking of a vehicle comprises a power bus coupled to a first driver associated with a first electromechanical actuator (EMA). The power bus is also coupled to a second driver associated with a second EMA, and the first EMA and the second EMA are associated with a wheel of the vehicle. The power bus provides braking power to the first EMA via the first driver and to the second EMA via the second driver. A normal braking command interface provides a first braking signal to the first driver and a second braking signal to the second driver. An emergency/park brake interface bypasses the normal braking command interface and sends a first emergency/park braking signal to the first driver and a second emergency/park braking signal to the second driver. A sensor measures a current at a single location of the power bus that is proportional to a braking force exerted on the wheel.
Abstract:
An ECU executes a program including the steps of: if brake hold control is currently exerted , setting at zero a controlled value of a degree of operation of an accelerator pedal used as a controlled value of a degree of a request made by a driver for acceleration, to control a force output to drive the vehicle; if an actual value of the degree of operation of the accelerator pedal serving as an actual value of the degree of the request made by the driver for acceleration is larger than a predetermined degree, determining that there is a request from the driver for acceleration; outputting a command to cancel the brake hold control; and converging the controlled value of the degree of operation of the accelerator pedal to the actual value of the degree of operation of the accelerator pedal.
Abstract:
Provided are a braking control system for a vehicle which is controlled in a priority order, and a method of the same. In more detail, the present invention relates to a braking control system for a vehicle equipped with an electronic brake at each wheel, in which the braking control system includes: a first control unit controlling the operation of a first electronic brake mounted at a front-left wheel and a second electronic brake mounted at a front-right wheel in response to braking signals; and a second control unit controlling the operation of a third electronic brake mounted at a rear-left wheel and a fourth electronic brake mounted at a rear-right wheel in response to the braking signals. In this configuration, when a fail occurs in any one of the first and second control units, the other control unit selectively controls at least one or more of the first to fourth electronic brakes, in accordance with predetermined logic.
Abstract:
A system for determining a setpoint associated with a position of a pedal in an automobile of type that includes two sensors each measuring a value associated with the pedal position. The system includes a mechanism capable of switching between a first and second state on a predetermined switching position of the pedal, and a mechanism generating the setpoint on the basis of the measures from the two sensors and of a current state of the switching mechanism. The generation mechanism is capable of selecting the measure corresponding to the smallest of the pedal positions when the switching mechanism is in the first state, and selecting the measure corresponding to the largest of the pedal positions when the switching mechanism is in the second state.
Abstract:
The invention relates to an architecture for powering aircraft brakes for an aircraft having at least two undercarriages, each having a certain number of wheels, each of the wheels being fitted with brakes, each having a certain number of electromechanical braking actuators, the architecture including controllers for delivering power signals to the actuators in response to a braking order, the wheels on each of the undercarriages being grouped together in first and second complementary groups such that for each group of wheels, a first group of actuators is controlled by one controller that controls those actuators only, and a complementary second group of actuators is controlled by another controller that controls only those actuators.
Abstract:
A vehicle-supported data processing system includes a plurality of processing units communicating with one another via a bus system, which are each supplied with operating power by at least one of the at least two different vehicle electrical systems. Multiple transmitter units for control information and multiple receiver units for the control information are among the processing units. The bus system is a ring bus, in which each processing unit is connected to at least two adjacent processing units by a bus segment in each case. The ring bus is divided, by potential separating devices, which are incorporated in the bus segments which connect processing units powered by different vehicle electrical systems, into a number of sections, which is smaller than the number of the processing units.