Abstract:
This fuel generator is equipped with fine particles of a fuel-generating agent (1) that generates fuel by an oxidation reaction with an oxidizing gas and can be regenerated by a reduction reaction with a reducing gas, and a porous member (3). The fine particles of the fuel-generating agent (1) are dispersed and disposed in the interior of the porous member(3).
Abstract:
A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
Abstract:
A fuel cell system (10) basically containing an energy storage subunit (14) which receives feed fuel (17) or recirculated fuel (23) both containing H2 where either fuel is contacted with a metal in the energy storage subunit (14) to provide a H2 rich fuel (18) to a fuel cell power generator (20) that is completely separated from all other components such as possible reformers (13), thermal energy sources (16) and storage media subunits (24, 35).
Abstract:
Disclosed is a process for making a high-purity gas. The process includes an interrelationship among at least four bath vessels, each of which has a molten metal bath. In one embodiment, the process generally includes adding a gas stream into a first bath vessel and then removing that gas stream to introduce it into a third bath vessel. The third bath gas stream is removed to ultimately obtain hydrogen. Steam is added to a fourth bath vessel to ultimately produce additional hydrogen. One or more gas streams produced in the third and/or fourth bath vessels are added to a second bath vessel to ultimately result in production of methane or carbon monoxide.
Abstract:
The present invention relates to a process for the self-regulated production as a function of the demand, under submerged conditions, of a gas (G), said gas (G) being generated by a chemical reaction between a liquid (L) and a solid (S) (hydrogen generated by hydrolysis of a metal hydride, for example) and not being polluted between the generation thereof and the delivery thereof. The present invention also relates to a device suitable for the implementation of said process.
Abstract:
A process for manufacturing silicon-based nanoparticles by electrochemical etching of a substrate, wherein the substrate is a metallurgical-grade or upgraded metallurgical-grade silicon, the substrate including an impurity content greater than 0.01%.
Abstract:
An object is to provide a process for providing hydrogen or heavy hydrogens conveniently without the necessity of large-scale equipment and a process capable of performing hydrogenation (protiation, deuteration or tritiation) reaction conveniently without the use of an expensive reagent and a special catalyst. The production process includes a process for producing hydrogen or heavy hydrogens, containing subjecting water or heavy water to mechanochemical reaction in the presence of a catalyst metal, and a process for producing a hydrogenated (protiated, deuterated or tritiated) organic compound, containing subjecting an organic compound and water or heavy water to mechanochemical reaction in the presence of a catalyst metal.
Abstract:
A method is disclosed for producing energy from the controlled reaction of an alkali metal with water. The method comprises forcing a liquefied alkali metal through a filter that separates the liquid alkali metal into alkali metal droplets. The alkali metal droplets comprise small enough particles that the alkali metal droplets completely react in water to produce heat, steam, an alkaline hydroxide and hydrogen gas before the alkali metal droplets reach the surface of the water. The filter separates the alkali metal droplets at a sufficient distance to avoid recombining of the alkali metal droplets. The alkaline hydroxide is reduced to an alkali metal and water which can be reused in the system.
Abstract:
A Fe—Ni compound oxide is used as an oxygen carrier for chemical looping combustion process, wherein the structure of the Fe—Ni compound oxide is a single-phase spinel structure. The method for manufacturing the Fe—Ni compound oxide of the invention includes the following steps: mixing Fe2O3 and NiO to obtain a mixing solution and ball milling the mixing solution by the solid state ball milling method; drying the mixing solution to obtain a precipitate; granulating the precipitate and then calcining the granulated precipitate to obtain the Fe—Ni compound oxide. Accordingly, the Fe—Ni compound oxide manufactured by the method of the invention is provided with high oxidation rate and high reduction rate, and capable of keeping loops and producing hydrogen gas.
Abstract translation:Fe-Ni复合氧化物用作化学循环燃烧过程的氧载体,其中Fe-Ni复合氧化物的结构是单相尖晶石结构。 本发明的Fe-Ni复合氧化物的制造方法包括以下步骤:将Fe 2 O 3和NiO混合以获得混合溶液,并通过固态球磨法球磨该混合溶液; 干燥混合溶液得到沉淀物; 将沉淀物造粒,然后煅烧造粒沉淀物,得到Fe-Ni复合氧化物。 因此,通过本发明的方法制造的Fe-Ni复合氧化物具有高的氧化速率和高的还原速率,并且能够保持环路并产生氢气。
Abstract:
A reactor system for the transformation of solid, liquid, gaseous, and related hydrocarbon feedstocks into high-purity, high-pressure gas streams capable of withstanding high temperatures and high pressures. The system comprises a plurality of reactor housings and a plurality of molten-metal bath vessels within the housings, the bath vessels in fluid communication with each other via conduits, with communication facilitated by gravity and temperature/pressure differentials.