Abstract:
In a cross coupling reaction, in a case where a halogen atom is selected as the leaving group of the raw material compound, a harmful halogen waste forms as a by-product after the reaction, and disposal of the waste liquid is complicated and environmental burden is high. In a carbon-hydrogen activation cross coupling reaction which requires no halogen atom as the leaving group, although no halogen waste forms as a by-product, the reaction substrate is considerably restricted, and the reaction remains a limited molecular construction method.A method for producing an aromatic compound, which comprises subjecting an aromatic nitro compound and a boronic acid compound to a cross coupling reaction in the presence of a metal catalyst.
Abstract:
A method for producing C2+ hydrocarbons and H2 comprising (a) introducing to a reactor a reactant mixture comprising methane, (b) heating the reactant mixture to a preheating temperature to yield a heated mixture, (c) generating free radicals in the heated mixture to form a primary effluent mixture comprising free radicals, C2+ hydrocarbons, H2, and unreacted methane, (d) reacting the primary effluent mixture in a secondary reaction zone to form a secondary effluent mixture comprising C2+ hydrocarbons, H2, free radicals, and unreacted methane, at a secondary reaction zone temperature that is greater than the preheating temperature, wherein a free radicals amount in the primary effluent mixture is greater than a free radicals amount in the secondary effluent mixture, (e) cooling the secondary effluent mixture to a quench temperature lower than the secondary reaction zone temperature to yield a product mixture comprising C2+ hydrocarbons and H2, and (f) recovering the product mixture.
Abstract:
An object is to provide a process for providing hydrogen or heavy hydrogens conveniently without the necessity of large-scale equipment and a process capable of performing hydrogenation (protiation, deuteration or tritiation) reaction conveniently without the use of an expensive reagent and a special catalyst. The production process includes a process for producing hydrogen or heavy hydrogens, containing subjecting water or heavy water to mechanochemical reaction in the presence of a catalyst metal, and a process for producing a hydrogenated (protiated, deuterated or tritiated) organic compound, containing subjecting an organic compound and water or heavy water to mechanochemical reaction in the presence of a catalyst metal.
Abstract:
A system (1, 1A) for manufacturing an aromatic compound according to the present invention includes: a first manufacturing device (2) that synthesizes a target substance from natural gas; a second manufacturing device that synthesizes an aromatic compound by a catalytic reaction from the natural gas and supplies a mixed gas mainly including unreacted methane and by-product hydrogen to the first manufacturing device (2) to manufacture the target substance; and a hydrogen separation device (3, 3A) that separates hydrogen from purge gas generated from the first manufacturing device (2) and supplies the same to the second manufacturing device (4, 4A) to regenerate the catalyst used for the catalytic reaction.
Abstract:
Disclosed are methods for rerouting radical cascade cyclizations by using alkenes as alkyne equivalents. The reaction sequence is initiated by a novel 1,2 stannyl shift which achieves chemo- and regioselectivity in the process. The radical “hopping” leads to the formation of the radical center necessary for the sequence of selective cyclizations and fragmentations to follow. In the last step of the cascade, the elimination of a rationally designed radical leaving group via β-C—C bond scission aromatizes the product without the need for external oxidant. The Bu3Sn moiety, which is installed during the reaction sequence, allows further functionalization of the product via facile reactions with electrophiles as well as Stille and Suzuki cross-coupling reactions. This selective radical transformation opens a new approach for the controlled transformation of enynes into extended polycyclic structures of tunable dimensions.
Abstract:
Phosphoranimide-metal catalysts and their role in C—O bond hydrogenolysis and hydrodeoxygenation (HDO) are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze C—O bond hydrogenolyses of a range of oxygen-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodeoxygenation.
Abstract:
A process for converting polycyclic aromatic compounds to monocyclic aromatic compounds includes pyrolyzing a coal feed to produce a coke stream and a coal tar stream. The coal tar stream is cracked, and the cracked coal tar stream is fractionated to produce an aromatic fraction comprising the polycyclic aromatic compounds. The process further includes hydrocracking the aromatic fraction to partially hydrogenate at least a first portion of the aromatic fraction, and to open at least one ring of a second portion of the aromatic fraction to form the monocyclic aromatic compounds from the polycyclic compounds, and recycling the first portion of the aromatic fraction.
Abstract:
There is provided a substance having much higher catalytic activity for a Suzuki-Miyaura coupling reaction than conventional heterogenous catalysts. The present invention provides a zeolite-palladium complex including USY-zeolite and Pd supported on the USY-zeolite, the Pd having a Pd—Pd coordination number of 4 or less and an oxidation number of 0.5 or less.
Abstract:
A phenanthrene derivative is represented by a formula (1) below. In the formula (1), Ar1 to Ar4 each represent an aromatic hydrocarbon ring group having 6 to 18 carbon atoms for forming the ring. The aromatic hydrocarbon ring group contains none of anthracene skeleton, pyrene skeleton, aceanthrylene skeleton and naphthacene skeleton. L represents a single bond, a substituted or unsubstituted benzene skeleton, naphthalene skeleton, biphenylene skeleton, fluorene skeleton, phenanthrene skeleton, fluoranthene skeleton, triphenylene skeleton, chrysene skeleton, phenyl-naphthalene skeleton or binaphthalene skeleton. R1 and R2 each represent a substituent, the number of which may be 0, 1 or more. R1 and R2 may be bonded in any positions of the phenanthrene skeleton. m, n, l and p each represent 0 or 1 while satisfying m+n+l+p≧1 (m,n≧l,p). a and b each represent an integer of 0 to 8.
Abstract:
This invention is directed to a new process for making an alkylaromatic compound. In an embodiment of this invention, the process is directed to selective synthesizing an alkylaromatic compound comprising a high amount of dialkylate product. In general, this process involves contacting at least one alkylatable aromatic compound with an alkylating agent and a catalyst under suitable reaction conditions such that the resulting reactor effluent prior to any stripping step may be characterized by a dialkylate product content of at least 44 wt % and a trialkylate and higher polyalkylate product content of no more than 20 wt %. The alkylaromatic compounds produced have excellent thermal and oxidative stabilities, good additive solvency, and improved seal compatibility while maintaining good VI and low temperature properties. They are useful as lubricant basestocks and lubricant additives.