Abstract:
A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.
Abstract:
A RF generator includes a structure having an input section, an output section, and an opening extending between the input section and the output section, wherein the output section has a first cavity and a second cavity, and wherein the first and second cavities are spaced apart from each other so that they are electromagnetically uncoupled from each other. A method of providing RF energy, includes receiving an electron beam, providing a first RF energy through a first cavity, wherein the first RF energy is generated using the electron beam, and providing a second RF energy through a second cavity, wherein the second RF energy is generated using the electron beam, wherein the first cavity and the second cavity are spaced apart from each other so that they are electromagnetically uncoupled from each other.
Abstract:
The plasma klystron switching device of the present invention may include a low-dielectric substrate, a plasma cavity internally pressurized by an inert gas, a circuit assembly formed on the first surface of the low-dielectric substrate and enclosed by the plasma cavity, wherein the circuit assembly includes a first electrode and a second electrode configured to form a switching gap, wherein the switching gap is configured to act as a high conductance plasma generation zone during an ON state of the plasma klystron switching device and a low conductance zone during an OFF state of the plasma klystron switching device, an evacuated klystron resonance generator, wherein the klystron resonance generator includes a klystron resonance cavity, wherein the klystron resonance generator includes a coupling aperture configured to RF couple the klystron resonance cavity and the plasma cavity, and a field emitter array configured to energize the klystron resonance generator.
Abstract:
A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.
Abstract:
An optically tunable cavity for an electronic device concurrently achieves high bandwidth (for example, at least about 10 percent, typically greater than about 50 percent) with high DC-RF efficiency (for example, at least about 50 percent, typically greater than about 85 percent). The electronic device may be a vacuum electronic device, including linear-beam and cross-field devices, with either an input circuit or an output circuit, or both, containing a photocapacitance-controlled resonator embedded such that a laser beam can impinge upon a semiconductor gap of the resonator. The laser beam may instantaneously change the resonant mode of the overall loaded cavity, thus allowing for amplification or oscillation of the desired frequency throughout the vacuum electronic device.
Abstract:
A solid state Klystron structure is fabricated by forming a source contact and a drain contact to both ends of a conducting wire and by forming a bias gate and a signal gate on the conducting wire. The conducting wire may be at least one carbon nanotube or at least one semiconductor wire with long ballistic mean free paths. By applying a signal at a frequency that corresponds to an integer multiple of the transit time of the ballistic carriers between adjacent fingers of the signal gate, the carriers are bunched within the conducting wire, thus amplifying the current through the solid state Klystron at a frequency of the signal to the signal gate, thus achieving a power gain.