Abstract:
A bow-spring centralizer (6) includes bow springs (5), moving collars (11) secured to each end of each bow spring, and interlocked stop collars (10). Extendable collars (8) may each be formed of a moving collar (11) movably interlocked with a stop collar (10). The centralizer (6) may optionally be formed from a tube cut using a laser to create two extendable collars coupled by bow springs. Each extendable collar may include heads integrally formed on extensions protruding from a collar (stop collar or moving collar). The heads may be generally rectangular, arrow, or teardrop-shaped head or some other shape. Each head may be slidably captured within a chamber on the interlocked collar (moving collar or stop collar). The extensions of each interlocked tubular member define the outer walls of the chamber in which a head of the interlocked tubular member is slidably captured. The stop collars may include or cooperate with one or more fingers extending along a casing to be secured by a sleeve that forms an interference fit about the casing.
Abstract:
A top guide having an extendable and retractable guide plate for engaging and aligning lengths of pipe over a pipe gripping device is described. The top guide employs a linear actuator such as a hydraulic cylinder to extend and retract the guide plate into and out of a protective housing. The guide plate has a bumper with a V-shaped Stu face for engaging and aligning a pipe segment upon extension of the guide plate. The guide plate has an adjustment mechanism to allow the position of the guide plate to be changed to accommodate pipe of varying diameters.
Abstract:
An apparatus for use in connection using a drill having a drilling element for forming a borehole in a face of a mine passage includes a drill guide for engaging the drilling element while permitting the drilling element to move toward the face for forming the borehole. The drill guide includes a keeper for keeping the drilling element in a desired position, which keeper is biased for pivoting movement upon the application of a manual force between an active position for capturing the drilling element and a retracted position for releasing the drilling element. A low profile drill guide is also disclosed, as is a guard for a drill guide, and also related methods.
Abstract:
A coiled tubing deployment system includes an offshore rig having a reel positioned thereon and coiled tubing wound on the reel. A guide arch receives the coiled tubing from the reel and a monitoring support guide fixed to the offshore rig receives and directs the coiled tubing into water. The monitoring support guide has a frame and at least two hydraulic rams. A depth counter measures the coiled tubing deployed from the reel and generates length measurement signals, and sensors coupled to the at least two hydraulic rams measure real-time lateral movement of the coiled tubing with respect to the monitoring support guide as the coiled tubing is deployed into the water and thereby generate sensor signals. A data acquisition system receives and processes the length measurement and sensor signals to provide an output signal indicative of real-time bending fatigue of the coiled tubing at select locations along the coiled tubing.
Abstract:
A track guiding system includes a first track segment having a first end and a second end, the first track segment including a first linear beam segment operatively coupled to a first linear plate segment. The track guiding system further includes and a second track segment having a first end and a second end, the second track segment including a second linear beam segment operatively coupled to a second linear plate segment, wherein the first end of the first track segment is adapted to be operatively coupled to the second end of the second track segment, a first end of the first linear beam segment proximate the first end of the first track segment being adapted to overlap a second end of the second linear plate segment proximate the second end of said second track segment when the second track segment is operatively coupled to the first track segment.
Abstract:
The invention relates to a pipe clamping device comprising a housing which has a tubular center in which a pipe is to be positioned. The pipe clamping device comprises at least three gripping devices for synchronous movement in towards the pipe. Each gripping device is disposed with a direction of movement in towards the tubular center, where each gripping device is arranged in order, in contact with the pipe, to provide a holding force. The pipe clamping device is provided with elongate flexible transmission elements, each of the elongate flexible transmission elements being attached to one of the gripping devices and running in contact with at least one support means to attachment to each of the other gripping devices. Upon movement of at least one of the gripping device, this movement is transmitted to at least one of the other gripping device by the associated elongate transmission element. The invention also comprises a pipe clamping device in which there is used at least two gripping devices and a torque tong, of which the pipe clamping device is a part.
Abstract:
A well tool apparatus for damping torsional vibration of a drill string comprises stabilizing members projecting radially outwards from a housing that is, in operation, rotationally integrated in the drill string, to stabilize the drill string by engagement with a borehole wall. The stabilizing members are displaceably mounted on the housing to permit limited angular movement thereof relative to the housing about its rotational axis. The well tool apparatus includes a hydraulic damping mechanism to damp angular displacement of the stabilizing members relative to the housing, thereby damping torsional vibration of the housing and the connected drill string, in use.
Abstract:
A racking arm assembly is adapted to be mounted on a drill floor of a drilling rig and includes a lift arm assembly having a first arm that is movably coupled to a vertical support column, wherein the lift arm assembly is adapted to be raised and lowered along a vertical length of the vertical support column during a pipe handling operation. A lift jaw assembly is pivotably coupled to a second arm of the lift arm assembly and includes a lift jaw assembly having a lift jaw gripping apparatus that is adapted to grip and fixedly hold a drill pipe stand proximate a pin end of the drill pipe stand during the pipe handling operation. The lift jaw gripping apparatus is further adapted to be rotated relative to the lift arm assembly about a substantially horizontal axis while the lift jaw gripping apparatus is fixedly holding the drill pipe stand.
Abstract:
A centralizer for use in a rock drill rig is disclosed. The centralizer includes a clamping member which moves generally tangentially to a bush, in order to clamp the bush in place within the centralizer.
Abstract:
A method includes introducing a bullnose assembly into a main bore of a wellbore, the bullnose assembly including a body and a bullnose tip arranged at a distal end of the body and being configured to move between a default configuration, where the bullnose tip exhibits a first diameter, and an actuated configuration, where the bullnose tip exhibits a second diameter different than the first diameter. The bullnose assembly is advanced to a deflector arranged within the main bore and defining a first channel that exhibits a predetermined diameter and communicates with a lower portion of the main bore, and a second channel that communicates with a lateral bore. The bullnose assembly is then directed into either the lower portion of the main bore or the lateral bore based on a diameter of the bullnose tip as compared to the predetermined diameter.