摘要:
Methods and devices are provided for securely transmitting sensitive information over the Internet to and from a first device in a home network that lacks the ability to communicate according to a secure protocol. Communications between the first device and a second device within the home network may proceed according to a non-secure protocol, such as HTTP. However, the second device has the ability to communicate with the outside world via a secure protocol, such as HTTPS. Various implementations of the invention allow the first device to avail itself of the secure communications provided by the second device.
摘要:
In one embodiment, command message generation and execution using a machine code-instruction is performed. One embodiment includes a particular machine executing a single machine-code instruction including a reference into a command-message-building data structure stored in memory. This executing the single machine-code instruction includes generating a command message and initiating communication of the command message to a hardware accelerator, including copying command information from the command-message-building data structure based on the reference into the command message. The hardware accelerator receives and executes the command message. In one embodiment, the command message is message-switched from a processor to a hardware accelerator, such as, but not limited to, a memory controller, a table lookup unit, or a prefix lookup unit. In one embodiment, a plurality of threads share the command-message-building data structure. In one embodiment, a plurality of processors share the command-message-building data structure.
摘要:
In one embodiment, network address translated (NAT) mapped addresses are selectively used based on their prior network reachability. One embodiment maintains for each particular mapped address (e.g., NAT public address pool member), a reachability status level based on prior usage of the particular mapped address to communicate with external destinations. By continuously monitoring the reachability “health” of mapped addresses, problem-experiencing mapped addresses can be avoided. One embodiment monitors the success and/or failure rates of connection attempts over a rolling time period to provide an up-to-date current view of the reachability status level of corresponding mapped addresses. In one embodiment, a network address translation device assigns, based on their reachability status level, these mapped addresses. One embodiment provides an administrative notification for particular mapped address or ceases using the particular mapped address in response to its reachability status level falling outside a predetermined or calculated level.
摘要:
In one embodiment, a first node in a wireless deterministic network communicates to a second node configuration information identifying a destination-facing path portion of a particular one-way path traversing from a source node to a destination node within the wireless deterministic network. The destination-facing portion includes a path traversing from the second node over one or more additional nodes to the destination node over which to forward packets received over a first portion of the particular one-way path from the source node to the second node. The configuration information includes a particular time slot for the second node to receive packets being sent over the particular one-way path. In one embodiment, the first node receives from the second node an acknowledgement message in the particular time slot that the destination-facing portion of the particular one-way path was configured and activated.
摘要:
In one embodiment, a one-way delay is measured between optical devices in an optical transport network based on roundtrip times of request and corresponding response frames. A first optical device sends a sequence of delay measurement request frames to a second optical device, which varies a local delay before responding to a request frame, thus causing a slippage in the sequence of reply frames received by the first device. The point at which the request frames are received in relation to the stream of frames sent by the optical device can be identified based on the frame slippage. Therefore, the delay measurement can be adjusted by a corresponding offset to the beginning of a frame in order to increase the accuracy of the one-way delay measurement.
摘要:
In one embodiment, multiple content-addressable memory entries are associated with each other to effectively form a batch content-addressable memory entry that spans multiple physical entries of the content-addressable memory device. To match against this content-addressable memory entry, multiple lookup operations are required—i.e., one lookup operation for each combined physical entry. Further, one embodiment provides that a batch content-addressable memory entry can span one, two, three, or more physical content-addressable memory entries, and batch content-addressable memory entries of varying sizes could be programmed into a single content-addressable memory device. Thus, a lookup operation might take two lookup iterations on the physical entries of the content-addressable memory device, with a next lookup operation taking a different number of lookup iterations (e.g., one, three or more).
摘要:
In one embodiment, the processing by a packet switching device of a received network-to-link-layer address resolution request message (e.g., Address Resolution Protocol [ARP] Request message, Neighbor Discovery Protocol [NDP] Neighbor Solicitation message) is dependent upon whether or not its target IP address corresponds to a network gateway packet switching device. When the target IP address of a received ARP Request/NDP Neighbor Solicitation message corresponds to a network gateway, then the packet switching device responds effectively on behalf of the network gateway, rather than forwarding the message to the network gateway. When the target IP address of a received ARP Request/NDP Neighbor Solicitation message does not correspond to a network gateway and the Media Access Control (MAC) address corresponding to the target IP address is known, then the packet switching device transforms then sends the broadcast or multicast frame into a unicast frame.
摘要:
In one embodiment, excess committed network appliance resources are shared for providing services within a network appliance. One approach maintains service resources in a committed service resource pool and one or more other pools of service resources. Service resources are taken from a corresponding pool as needed. Service resources are reallocated to the committed resource pool as needed to ensure that service resources are available to service corresponding packet streams at their corresponding committed rate. Examples of such services provided by a network appliance include, but are not limited to, network address translation (NAT), firewall, Internet Protocol Security (IPsec), virtual private network (VPN), or deep packet inspection (DPI) services.
摘要:
In one embodiment, a device receives a first packet stream and a second packet stream over different paths through a network, wherein each of said sent first and the second packet streams includes a same replicated stream of packets. The apparatus processes packets of the first packet stream when the first packet stream is in an active packet stream, and while buffering and subsequently dropping packets of the second packet stream when the second packet stream is in a non-active state. In response to identifying a difference in a number of packets in the same replicated stream of packets received in the second packet stream compared to in the first packet stream equaling or exceeding a predetermined threshold, the second packet stream becomes in the active state and missing packets are forwarded from the buffered second stream packets.
摘要:
In one embodiment, micro-loops are avoided in ring topologies of packet switching devices by changing the order of propagation of link state information concerning failed communications between a particular packet switching device and a neighbor packet switching device. In one embodiment, the particular packet switching device communicates link state information of a high cost of the particular communications (e.g., in the direction from particular to neighbor packet switching devices) such that this link state information will propagate towards the particular packet switching device from at least from the furthest packet switching device in the ring topology that is currently configured to forward packets having a destination address of the neighbor packet switching device through the particular packet switching device.