摘要:
Optoelectronic surveying device for distance and/or position determination comprising a radiation source for generating optical measurement radiation of a first wavelength, wherein the measurement radiation is emitted in an oriented manner into free space. The radiation source is designed such that the first wavelength is in the range between 1210 nm and 1400 nm and the power of the emitted measurement radiation is at least 14 mW in the chronological and spatial average.
摘要:
Some embodiments described herein include a method for generating scaled terrain information with an unmanned autonomous gardening vehicle. In some embodiments the gardening vehicle includes a driving unit comprising a set of at least one drive wheel and a motor connected to the at least one drive wheel for providing movability of the gardening vehicle, a gardening-tool and a camera for capturing images of a terrain, the camera being positioned and aligned in known manner relative to the gardening vehicle. In context of the method the gardening vehicle is moved in the terrain while concurrently generating a set of image data by capturing an image series of terrain sections so that at least two (successive) images of the image series cover an amount of identical points in the terrain, wherein the terrain sections are defined by a viewing area of the camera at respective positions of the camera while moving.
摘要:
A method for providing dynamic state information for a coordinate measuring machine that includes a base, a probe head, a machine structure linking the probe head to the base and a drive mechanism that moves the probe head. A dynamic model with first state variables represents an actual state of physical properties of the coordinate measuring machine. The first state variables are provided in a database and the actual state of the coordinate measuring machine is determined using the dynamic model. The state variables are monitored and, based thereon, the change of the state variables is determined. Updated, second state variables are set regarding the determined change of the first state variables. The dynamic model is updated using the second state variables in place of the first state variables, wherein the actual state of the coordinate measuring machine is calculated based on the second state variables.
摘要:
Some embodiments of the invention relate to a coordinate measuring method for detecting an object surface by means of a coordinate measuring machine, comprising a measuring head for accommodating a sensor, a guiding unit for producing a relative movement of the measuring head in relation to the object surface in at least one direction, an optical sensor for detecting the object surface, and a control unit, the object surface being optically detected by the optical sensor during the coordinate measuring method, and a data set representing a surface profile in an object profile domain being generated. The data set is filtered by simulating contact of the surface profile represented by the data set with a virtual tactile sensor, and a tactile data set is derived from the simulated contact such that the tactile data set represents a virtual tactile surface profile in a virtual sensor domain.
摘要:
Some embodiments of the invention relate to a method for measuring spatial points with a laser scanner. The method may include: scanning multiple spatial points on an object; determining coordinates of the respective spatial point, determining a close range about a central spatial point with at least two spatial points whose angle coordinates are in a defined angular space adjacent to those of the central spatial point; aggregating coordinates of the spatial points in the specific close range; and replacing coordinates of the central spatial point by aggregating coordinates of the spatial points in the specific close range. In some embodiments, the laser scanner forms the origin of the coordinates, and the coordinates comprise a distance and at least one angle.
摘要:
In an example embodiment, a robot positioning device includes a first interface configured to communicate with a robot and a second interface configured to communicate with a location measuring system. The robot positioning device includes a calibrator, a modeler, and an instructor. The calibrator is configured to direct the location measuring system to determine robot calibration locations when robot joints are positioned in calibration joint positions. The modeler is configured to create a calibrated model relating robot joint positions to robot locations based at least in part on the robot calibration locations received from the location measuring system and associated calibration joint positions of the robot joints. The instructor is configured to receive a goal location from the robot. The instructor is further configured to transmit goal joint positions to the robot, the goal joint positions based at least in part on the goal location and the calibrated model.
摘要:
A method for a six degree of freedom position and orientation determination of a known shape in a scenery is disclosed. The method includes taking a range image with a range imaging camera and a visual picture with a digital camera. The range imaging camera includes a sensor array with a first number of pixels. Determining a 3D cluster of points from range information collected from the sensor array to a point of the scenery. the digital camera comprises an image sensor having a second number of pixels, resulting in a 2D picture. A stored 3D digital representation of the known shape may be fitted in a virtual space to match the reproduction of the known object in the 2D picture and the 3D cluster of points and determining the six degree of freedom position and orientation of the known shape according to the virtual match.
摘要:
A system and method for augmenting a GNSS/INS system by using a vision system is provided. The GNSS system generates GNSS location information and the INS system generates inertial location information. The vision system further generates vision system location information including horizon, plumb lines and distance traveled. The GNSS information, INS information and vision system are combined in a Kalman filter to produce improved location information.
摘要:
A mobile field controller, together with a geodetic surveying device, forms a one-person measurement system for geodetic position determination. The field controller allows the spatial orientation of the field controller to be determined. The field controller supports a geodetic target object and has a distance-measuring unit that measures the distance between the field controller and a target point, the distance being optically marked by the field controller, as a result of which a 3D point cloud is generated without physical contact to a target point. When surveying a specific terrain region, algorithms analyzing the 3D point cloud are saved in a control and evaluation unit of the field controller. The absolute position of the target point is calculated from the data of the spatial orientation of the field controller, the distance between field controller and target point and the absolute position of the geodetic target object.