Abstract:
An apparatus for employing ambient light collected from an external light source to detect a user's fingers that are gripping at least a relatively transparent portion of a case. The ends of a plurality of waveguides are coupled at relatively unequal or equidistant positions to the interior surface of the transparent portion, where they are arranged to collect light from the exterior light source if the user's finger(s) are not gripping the mobile device at that position. If the light collected by the wave guides is blocked by one or more of the user's fingers, a profile can be determined for the placement, orientation (left handed or right handed), and size of the user's fingers and hand gripping the mobile device. Also, interactions of the fingers with the mobile device can be detected, such as lifting away, pressing, or sliding one or more fingers at the transparent portion for a short or relatively lengthy period of time. Additionally, the collected light can be provided by one or more external light sources, such as ambient light from remotely located sources, one or more illuminators within a mobile device such as a back light for a display, control or other element.
Abstract:
An image projection device for displaying an image onto a remote surface. The image projection device employs a scanner to project image beams of visible light and tracer beams of light onto a remote surface to form a display of the image. The device also employs a light detector to sense at least the reflections of light from the tracer beam pulses incident on the remote surface. The device employs the sensed tracer beam light pulses to predict the trajectory of subsequent image beam light pulses and tracer beam light pulses that form a display of the image on the remote surface in a pseudo random pattern. The trajectory of the projected image beam light pulses can be predicted so that the image is displayed from a point of view that can be selected by, or automatically adjusted for, a viewer of the displayed image.
Abstract:
Flexible optical waveguide substrates that can be used with touch screen displays. The waveguide substrates include a flexible base material. A first optical layer having a first index of refraction value is formed on the flexible base material. A second optical layer is then formed on the first optical layer, the second optical layer being patterned to form a plurality of optical elements and waveguides respectively. The second optical layer also has a second index of refraction value higher than the first index of refraction value. Lastly, a third optical layer is formed on the second optical layer. The third optical layer has a third index of refraction value lower than the second index of refraction value. The high N second layer is therefore sandwiched between the lower N first and third layers, creating an internally reflective surface wherever the high N and low N materials are in contact. The base material and first, second and third optical layers thus form a flexible waveguide substrate.
Abstract:
A system projects a user-viewable, computer-generated or -fed image, wherein a head-mounted projector is used to project an image onto a retro-reflective surface, so only the viewer can see the image. The projector is connected to a computer that contains software to create virtual 2-D and or 3-D images for viewing by the user. Further, one projector each is mounted on either side of the user's head, and, by choosing for example a retro angle of less than about 10 degrees, each eye can only see the image of one of the projectors at a given distance up to 3 meters, in this example, from the retro-reflective screen. The retro angle used may be reduced with larger viewing distance desired. These projectors use lasers to avoid the need for focusing, and in some cases these projectors use instead of lasers highly collimated LED light sources to avoid the need for focusing.
Abstract:
An image projection device for displaying an image onto a remote surface. The image projection device employs a scanner to project image beams of visible light and tracer beams of light onto a remote surface to form a display of the image. The device also employs a light detector to sense at least the reflections of light from the tracer beam pulses incident on the remote surface. The device employs the sensed tracer beam light pulses to predict the trajectory of subsequent image beam light pulses and tracer beam light pulses that form a display of the image on the remote surface in a pseudo random pattern. The trajectory of the projected image beam light pulses can be predicted so that the image is displayed from a point of view that can be selected by, or automatically adjusted for, a viewer of the displayed image.
Abstract:
A scanning light imaging device for continuously pseudo randomly scanning patterns of light in a beam onto a remote surface to achieve spatio-temporal super resolution for finding remotely located objects. The scanning light imaging device employs a scanner to project image beams of visible or non-visible light and/or tracer beams of non-visible light onto a remote surface or remote object to detect reflections. The device employs a light detector to sense at least the reflections of light from one or more of the image beams or the tracer beams incident on the remote surface or remote object. The device employs the sensed reflections of light beams to predict the trajectory of subsequent scanned beams in a pseudo random pattern and determine up to a six degrees of freedom position for the remote surface or remote object.
Abstract:
Methods, systems and apparatus for providing a suspension adapted for a vehicle that moves along a surface. In response to a speed of the vehicle moving along the surface being greater than a threshold value, employing force provided by air flowing between a passenger compartment and an undercarriage to lift the passenger compartment away from direct physical contact with the undercarriage.
Abstract:
Methods and systems for navigating a vehicle along a surface employ a scanner to scan a light beam over the surface; employ light reflected by one or more fiducial markers on the surface onto pixels of a receiver to determine a spatial arrangement of the fiducial markers on the surface; and compare the spatial arrangement of the fiducial markers with a predetermined map of the fiducial markers to determine a location of the vehicle.
Abstract:
Methods and systems for navigating a vehicle along a surface employ a scanner to scan a light beam over the surface; employ light reflected by one or more fiducial markers on the surface onto pixels of a receiver to determine a spatial arrangement of the fiducial markers on the surface; and compare the spatial arrangement of the fiducial markers with a predetermined map of the fiducial markers to determine a location of the vehicle.
Abstract:
Embodiments are directed toward a scanning LIDAR system that measures a distance to a target that reflects light from a transmitter to a receiver. A light transmitter is arranged to scan pulses of light that reflect off a remote surface (target) and illuminate fractions of the Field of View (FoV) of a receiver, such as a camera. These fractions of the FoV are smaller than a resolution provided by an array of pixels used to detect Time of Flight (ToF) reflections of the scanned pulses of light from a remote surface. The exemplary scanning LIDAR system may resolve an image of the remote surface at substantially higher resolution than the pixel resolution provided by its receiver.