Abstract:
A vehicle-mounted weapon station is configurable to adjust the height of a rotational elevation axis thereof. The weapon station is provided with at least one fixed hanging ammunition container that is reloadable under the armored protection of the vehicle and the weapon station shell. The weapon station may have both electrically-powered and manually-powered drive systems for rotating a pedestal about an azimuth axis relative to the vehicle, and for rotating weaponry and operational units about the elevation axis, wherein the electrical and manual drive systems transmit power through the same output gear.
Abstract:
The present invention provides improved non-contacting rotary joints for the transmission of electrical signals across an interface defined between two relatively-movable members. The improved non-contacting rotary joints broadly include: a signal source (A) operatively arranged to provide a high-speed digital data output signal; a controlled-impedance differential transmission line (C) having a source gap (D) and a termination gap (E); a power divider (B) operatively arranged to receive the high-speed digital data output signal from the signal source, and to supply it to the source gap of the controlled-impedance differential line; a near-field probe (G) arranged in spaced relation to the transmission line for receiving a signal transmitted across the interface; and receiving electronics (H) operatively arranged to receive the signal received by the probe; and wherein the rotary joint exhibits an ultra-wide bandwidth frequency response capability up to 40 GHz.
Abstract:
An electromechanical actuator (“EMA”) is provided with redundant load paths for driving the actuator stroke. The EMA includes a rotatable screw, a nut mated with the screw and having an external toothed surface, and a rotatable spline member having a splined surface engaging the external toothed surface of the nut. An actuator rod is coupled to the nut for linear movement with the nut. A first motor is operable to rotate the screw relative to the nut to cause the nut to travel linearly along the screw, and a second motor is operable to rotate the spline member and nut such that the nut travels linearly along the screw. Consequently, the actuator rod moves linearly by operation of the first motor alone, by operation of the second motor alone, and by simultaneous operation of the first and second motors. A no-back device may be incorporated into each load path.
Abstract:
An RWS is configurable to adjust the height of a rotational elevation axis thereof by providing interchangeable pairs of removably mounted yoke arms, wherein the pairs have different heights. The RWS is provided with at least one fixed hanging ammunition container that is reloadable under the armored protection of the vehicle and the RWS shell.
Abstract:
A load-sensing strut has a main body (26) having a longitudinal loading axis (A) along which an applied load is transmitted, and a load sensing member (38) arranged to carry at least a portion of the applied load when the load is within a predetermined range, wherein the load sensing member (38) includes at least one load sensor (46) generating a load signal. The strut also has a load alleviation member (36) arranged to reduce the portion of the applied load carried by the load sensing member (38) when the applied load is outside the predetermined loading range. Consequently, the load sensors exhibit greater sensitivity to incremental changes in the applied load within the predetermined range, yet the strut provides high strength and is capable of reacting to very high loads outside of the predetermined range. The strut may be used in actuating aircraft control surfaces in a high-lift system.
Abstract:
A rotary valve comprises a bushing and a cylindrical spool rotatably received by the bushing. The rotary valve avoids redundant control edge pairs by having exactly one first supply edge pair (P-C1) for controlling a first fluid supply path, exactly one second supply edge pair (P-C2) for controlling a second fluid supply path, exactly one first return edge pair (C2-R1) for controlling a first fluid return path, and exactly one second return edge pair (C1-R2) for controlling a second fluid return path. A first angle between the first supply edge pair and the first return edge pair, and a second angle between the second supply edge pair and the second return edge pair, are each greater than or equal to 120 degrees and less than 180 degrees. Geometric simplicity is achieved by tolerating a limited degree of force imbalance in valve operation.
Abstract:
A ball-detent torque-limiting assembly has breakout means for maintaining an axial separation distance between opposing pocketed surfaces of the assembly once the primary balls of the assembly have rolled out of their pockets, wherein the axial separation distance maintained by the breakout means is at least as great as the diameter of the balls. The breakout means may include a plurality of secondary balls deployed in a breakout event. The breakout means assumes the axially directed spring load that urges the opposing pocketed surfaces together, thereby preventing the primary balls from entering and exiting the pockets in quick and violent succession following breakout and avoiding damage to the torque-limiting assembly. The torque-limiting assembly is resettable by counter-rotation following a breakout event.
Abstract:
The present disclosure relates to a system including an anchor configured to be disposed within a foundation, wherein an upper side of the anchor is configured to be exposed at a surface of the foundation and a wedge-style anti-ram security barrier configured to mechanically couple to the anchor and mount to the surface of the foundation.
Abstract:
A tandem electrohydrostatic actuator (70) broadly includes a first piston (22) operatively arranged in a first cylinder (23), and a second piston (24) operatively arranged in a second cylinder (25). The pistons are coupled to move together. The first piston has a small extend area (35) and a large retract area (36). The second piston has a large extend area (38) and a small retract area (39). The large areas (36, 38) of the pistons are equal to one another and the small areas (35, 39) of the pistons are equal to one another. A reversible fixed-displacement first pump (45) has equal inlet and outlet flows supplied to the small areas of the first and second pistons, respectively. A reversible fixed-displacement second pump (40) has equal inlet and outlet flows supplied to the large areas of the first and second pistons, respectively. The total volume of the fluid in the actuator remains constant at all positions of the pistons. In the preferred embodiment, a connecting rod (26) joins the pistons, an output rod (29) is connected to the first piston and penetrates an end wall (30) of the first cylinder, and a stationary LVDT coil or body (31) has one end attached to an end wall (32) of the second cylinder and has its movable core connected to the connecting rod.
Abstract:
A torque motor (20) has a base (21), four polepieces (22A, 22B, 22C, 22D) extending away from the base, the polepieces being separated from one another and being arranged at the corners of an imaginary polygon (27), each polepiece terminating in a pole (23A, 23B, 23C, 23D); a coil (24A, 24B, 24C, 24D) surrounding each of the polepieces; an armature (26) pivotally mounted on the base, the armature having a portion arranged to move toward and away from an associated one of the poles, respectively, to define a variable-reluctance air gap (gA, gB, gC, gD) therebetween; a permanent magnet (29) mounted on one of the base and armature and polarized in a direction parallel to the pivotal axis of the armature; and wherein at least a portion of the torque motor is formed by a MEMS technique; whereby the coil may be selectively energized to cause the armature to pivot about its axis.