Abstract:
A method to compress microcode utilizing a genetic algorithm includes generating a population of chromosomes, each chromosome including one or more elements that indicate a cluster to which a portion of microcode memory belongs. The method further includes determining a fitness value of each chromosome and modifying the population of chromosomes based on the fitness values of the chromosomes to generate a new population of chromosomes. In addition, the method includes compressing the microcode memory using a cluster-based compression technique, wherein clusters are selected according to a chromosome from the new population with the best fitness value. Other embodiments are also disclosed.
Abstract:
Methods and apparatus to compile a software program to manage parallel μ caches are disclosed. In an example method, a compiler attempts to schedule a software program such that load instructions in a first set of load instructions has a first predetermine latency greater than the latency of the first cache. The compiler also marks a second set of load instructions with a latency less than the first predetermined latency to access the first cache. The compiler attempts to schedule the software program such that the load instruction in a third set have at least a second predetermined latency greater than the latency of the second cache. The compiler identifies a fourth set of load instructions in the scheduled software program having less than the second predetermined latency and marks the fourth set of load instructions to access the second cache.
Abstract:
Implementation of a Bloom filter using multiple single-ported memory slices. A control value is combined with a hashed address value such that the resultant address value has the property that one, and only one, of the k memories or slices is selected for a given input value, a, for each bank. Collisions are thereby avoided and the multiple hash accesses for a given input value, a, may be performed concurrently. Other embodiments are also described and claimed.
Abstract:
Dynamic optimization of application code is performed by selecting a portion of the application code as a possible transaction. A transaction has a property that when it is executed, it is either atomically committed or atomically aborted. Determining whether to convert the selected portion of the application code to a transaction includes determining whether to apply at least one of a group of code optimizations to the portion of the application code. If it is determined to apply at least one of the code optimizations of the group of optimizations to the portion of application code, then the optimization is applied to the portion of the code and the portion of the code is converted to a transaction.
Abstract:
In general, in one aspect, the disclosure describes a method to detect a transaction and direct non transactional memory (TM) user functions within the transaction. The non TM user functions are treated as TM functions and added to the TM list.
Abstract:
An arrangement is provided for compressing microcode ROM (“uROM”) in a processor and for efficiently accessing a compressed “uROM”. A clustering-based approach may be used to effectively compress a uROM. The approach groups similar columns of microcode into different clusters and identifies unique patterns within each cluster. Only unique patterns identified in each cluster are stored in a pattern storage. Indices, which help map an address of a microcode word (“uOP”) to be fetched from a uROM to unique patterns required for the uOP, may be stored in an index storage. Typically it takes a longer time to fetch a uOP from a compressed uROM than from an uncompressed uROM. The compressed uROM may be so designed that the process of fetching a uOP (or uOPs) from a compressed uROM may be fully-pipelined to reduce the access latency.
Abstract:
In a method for reducing code size, replaceable subsets of instructions at first locations in areas of infrequently executed instructions in a set of instructions and target subsets of instructions at second locations in the set of instructions are identified, wherein each replaceable subset matches at least one target subset. If multiple target subsets of instructions match one replaceable subset of instructions, one of the multiple matching target subsets is chosen as the matching target subset for the one replaceable subset based on whether the multiple target subsets are located in regions of frequently executed code. For each of at least some of the replaceable subsets of instructions, the replaceable subset of instructions is replaced with an instruction to cause the matching target subset of instructions at the second location to be executed.
Abstract:
A hierarchical software profiling mechanism that gathers hierarchical path profile information has been described. Software to be profiled is instrumented with instructions that save an outer path sum when an inner region is entered, and restore the outer path sum when the inner region is exited. When the inner region is being executed, an inner path sum is generated and a profile indicator representing the inner path traversed is updated prior to the outer path sum being restored. The software to be profiled is instrumented using information from augmented control flow graphs that represent the software.
Abstract:
A speculative code reuse mechanism includes a reuse buffer, a main processing core and a reuse checking core. The reuse buffer includes inputs and outputs of previously executed instances of code reuse regions. Aliased reuse regions are regions that access memory locations that may change between executions of the region. When an aliased code reuse region is encountered and a matching instance exists in the reuse buffer, the main core speculatively executes code occurring after the reuse region, while the reuse checking core executes code from the reuse region to verify the matching instance. If the matching instance is verified, the speculative execution is committed, and if the matching instance is not verified, the speculative execution is squashed.
Abstract:
Embodiments of apparatus and methods for detecting and recovering from incorrect memory dependence speculation in an out-of-order processor are described herein. For example, one embodiment of a method comprises: executing a first load instruction; detecting when the first load instruction experiences a bad store-to-load forwarding event during execution; tracking the occurrences of bad store-to-load forwarding event experienced by the first load instruction during execution; controlling enablement of an S-bit in the first load instruction based on the tracked occurrences; generating a plurality of load operations responsive to an enabled S-bit in first load instruction, wherein execution of the plurality of load operations produces a result equivalent to that from the execution of the first load instruction.