Abstract:
Various embodiments relate to sensing defects associated with a window. Furthermore, various embodiments relate to performing image processing to produce a corrected image of a scene based at least partly on data corresponding to the detected defects. In some examples, one or more lighting modules may be used to illuminate the window to facilitate detection of the defects by one or more sensor devices.
Abstract:
Keycaps for keyboards that have transparent top portions have a set of layered components to define a top surface that provides key definition by curvature, texture, ridges, or other external structural features. Other portions of the keycaps define a glyph or support structure for the top layer. Features such as angle filters and partially reflective materials are implemented to improve the visibility, contrast, and reflectivity of the keycaps. Multiple methods are used to bend or otherwise modify rigid transparent materials such as glass in order to add surface features and to improve aesthetics of the keycaps of a keyboard.
Abstract:
Electronic devices including a display layer and a cover layer including a foldable region are disclosed herein. The display layer and the cover layer are configured to be moved between a folded configuration and an unfolded configuration by bending the cover layer along the foldable region. Methods of making a cover layer for an electronic device are also disclosed.
Abstract:
A glass sheet having asymmetric chemical strengthening is disclosed and described. The examples described herein are directed to a cover glass for an electronic device and other glass components that may be used as enclosure elements or may form an enclosure. Within the glass component, localized compressive stress regions may be formed on opposite sides of the glass component, which may help arrest or redirect propagating cracks or defects in the glass. The opposing compressive stress regions may also help maintain the overall flatness of the component while increasing strength and/or impact resistance of the component.
Abstract:
Methods are disclosed directed to a controlled crystallization (ceramic particle growth) of a shaped glass ceramic workpiece. The physical and chemical properties of the shaped glass ceramic of the present invention may be specified or tailored by shaping or machining the workpiece during or in combination with a controlled crystallization process that nucleates (precipitates) ceramic particles from a glass material. For example, in one embodiment, a non-crystalline amorphous solid may be heated above a transition temperature and shaped (e.g., molded, pressed, or the like). Ceramic particles may be precipitated within the solid during at least one of the heating or the shaping, thereby forming a shaped glass ceramic.
Abstract:
A toughened ceramic component having a residual compressive stress and methods of forming the toughened ceramic component is disclosed. The ceramic component may include an internal portion having a first coefficient of thermal expansion (CTE) and an external portion substantially surrounding the internal portion and forming an exterior surface of the ceramic component. The external portion may have a second CTE that is less than the first CTE. Additionally, the external portion may be in compressive stress.
Abstract:
A cover glass including a center region and an outer region abutting the center region at an interface. The interface inhibits crack propagation from the outer region to the center region and vice versa. In another embodiment the cover glass may include mitigation voids introduced into the cover glass to inhibit crack propagation. The interface may be formed from the mitigation voids.
Abstract:
A system and processes for heat treating sapphire components to improve strength while maintaining the optical finish and/or transparency of the component. The processes may include an annealing process that uses an inert gas to reduce potential contaminants and the presence of reactive gasses. The process may also include a multi-stage heating process that may reduce thermally induced stress within the sapphire component which may produce slip lines or other optical defects. The process may also include a series of wet ultrasonic cleaning operations that reduce potential contaminants which may cause optical defects in an annealed sapphire component. An example system, fixtures, and shields are also described, which may improve the quality of the heat-treating process.