Abstract:
A display device and a method of adjusting backlight brightness of the display device are provided. The method includes converting original RGB signals of each pixel to corresponding RGBW signals; determining the color and original brightness value of each pixel based on the gray value ratio of the original RGB signals of each pixel; determining the backlight brightness value of each pixel based on the color of each pixel after the original RGB signals being converted; and performing weighted average calculation on the backlight brightness values of each pixel after the signals being converted, so as to obtain a whole backlight brightness adjustment value of all pixels.
Abstract:
A pixel array, comprising multiple pixel units; each pixel unit comprises three sub-pixels in different colors, the three sub-pixels being a red sub-pixel (R), a green sub-pixel (G) and a blue sub-pixel (B) respectively; the connecting lines between central points of the three sub-pixels form a triangle, and each sub-pixel is a cruciform consisting of a rectangle with an aspect ratio of 3:1 in the transverse direction and the longitudinal direction respectively, and having equal lengths in the transverse direction and the longitudinal direction. Also provided are a method of driving the pixel array and a display panel comprising the pixel array. Driving the pixel array with the driving method enables the display panel to have higher visual resolution.
Abstract:
A display substrate and a driving method thereof and a display device are provided. The display substrate includes two types of pixel rows arranged alternately and repeatedly. In one type of pixel row, a second sub-pixel, a third sub-pixel, a second sub-pixel, a first sub-pixel and a third sub-pixel are arranged successively and repeatedly. In the other type of pixel row, a third sub-pixel, a first sub-pixel, a second sub-pixel, a third sub-pixel and a second sub-pixel are arranged successively and repeatedly. A center line of any sub-pixel in a column direction in a pixel row does not coincide with a center line of any sub-pixel in the column direction in an adjacent pixel row.
Abstract:
Embodiments of the disclosure provide an electro-luminescence display panel and a fabrication method thereof, and a display device. The electro-luminescence display panel comprises a plurality of light-emitting units. Each light-emitting unit comprises a plurality of sub light-emitting units for displaying different colors, an electro-luminescence structure is provided in each of the sub light-emitting units, and the electro-luminescence structure comprises a quantum dot light-emitting layer.
Abstract:
There are disclosed in the present disclosure an array substrate, a driving method of a fingerprint recognition circuit and a display device. The array substrate comprises a substrate. There are formed on the substrate a fingerprint recognition circuit, a fingerprint signal read line, an initialization signal line, a common voltage input terminal and an output control signal line. As such, on one hand, since it is not needed a separate film layer or panel to carry the fingerprint recognition circuit, thickness of a corresponding display device can be reduced; on the other hand, the fingerprint recognition circuit and related signal lines can be formed simultaneously in the process of manufacturing the array substrate, thereby decreasing difficulty in manufacturing the corresponding display device.
Abstract:
Embodiments of the disclosure provide an electro-luminescence display panel and a fabrication method thereof, and a display device. The electro-luminescence display panel comprises a plurality of light-emitting units. Each light-emitting unit comprises a plurality of sub light-emitting units for displaying different colors, an electro-luminescence structure is provided in each of the sub light-emitting units, and the electro-luminescence structure comprises a quantum dot light-emitting layer.
Abstract:
The present invention provides a pixel array comprising a plurality of pixel units, each of which comprises three sub-pixels in different colors, wherein, in each pixel unit, any two adjacent sub-pixels are combined into a pixel block. Compared to the prior art, the width of the sub-pixel in the present invention increases, which reduces the difficulty of the manufacturing process of the pixel array and improves product yield. The present invention further provides a driving method of the pixel array, a display panel including the pixel array, and a display device including the display panel. When driving the above pixel array with the driving method, granular sensation of the display panel including the pixel array can be reduced, and a display effect of a display panel with higher resolution in the same size can be achieved.
Abstract:
The present disclosure relates to a 3D display panel, including a lower substrate comprising a plurality columns of subpixels in which preset columns of subpixels serve as a buffer zone; a grating configured to allow images of one part of subpixels in the lower substrate to enter a left eye of a viewer, and allow images of the other part of subpixels in the lower substrate to enter a right eye of the viewer; a positioning unit configured to determine a first distance which the viewer moves, and determine whether any subpixel of non-buffer zone is shielded by the grating according to the first distance; and an adjusting unit configured to adjust the buffer zone when the any subpixel of non-buffer zone is shielded by the grating.
Abstract:
The present invention provides a pixel array which comprises a plurality of pixel units, each of the plurality of pixel units comprises a plurality of sub-pixels having different colors, wherein, a horizontal-to-vertical ratio of each sub-pixel is in a range of 1:2 to 1:1. The present invention further provides a driving method of a pixel array, a display panel including the pixel array, and a display device including the display panel.
Abstract:
Exemplary embodiments of the present invention provide a display panel and a display driving method thereof, a display driving device and a display device. The display panel comprises a pixel array and a grating array blocking in the light outgoing direction of the pixel array, wherein the pixel array is periodically arranged in order of a first color sub-pixel column, a second color sub-pixel column and a third color sub-pixel column, each sub-pixel column comprising a plurality of rectangular sub-pixels; and the pixel array comprises four view pixel groups for displaying four views.