Abstract:
An embodiment of present disclosure provides a method for manufacturing an array substrate, an array substrate manufactured by the method, and a mask. The method for manufacturing the array substrate includes: providing a mask including a transparent substrate, a light semi-transmission region, a light non-transmission region, and a light transmission region excluding the light semi-transmission region and the light non-transmission region being formed on the transparent substrate; forming a first mask pattern on an base substrate by means of the light non-transmission region of the mask; and forming a second mask pattern on the base substrate having the first mask pattern by means of the light semi-transmission region and the light non-transmission region of the mask.
Abstract:
Embodiments of the present disclosure provide a GOA unit and a method for producing the same and a gate driver circuit, which are directed to a field of display technique. The GOA unit includes: a TFT module and a capacitor structure formed on a substrate. The TFT module includes a gate electrode, a source electrode and a drain electrode, and the capacitor structure includes a first electrode and a second electrode configured to form a first capacitor. The gate of the TFT module is located in a same layer as the first electrode of the capacitor structure, the source electrode and the drain electrode of the TFT module are located in a same layer as the second electrode of the capacitor structure, and the second electrode has a groove. Embodiments of the present application are used for a display apparatus.
Abstract:
A manufacturing method of a light barrier glass sheet, comprising: farming a metal layer (2) on a glass substrate (1); coating a first photoresist layer (3) on the metal layer (2), performing first exposure on the first photoresist layer (3) through a half tone mask, then performing first development on the first photoresist layer (3); removing partial region of the metal layer (2) through a first etching process; removing a partial thickness and a partial region of the first photoresist layer (3) through an ashing process; forming an insulating layer (4) on the exposed glass substrate (1), the exposed metal layer (2), the first photoresist layer (3) after the ashing process, and sidewalls of the photoresist layer (3) after the ashing process; removing the first photoresist layer (3), the insulating layer (4) on the first photoresist layer (3), and the insulating layer (4) on the sidewalls of the first photoresist layer (3) by a photoresist lifting-off process so as to form a via hole (7); forming a transparent pixel electrode pattern (5) in the via hole (7), on sidewalls of the via hole (7) and on the insulating layer (4). With the method, one mask process can be omitted, thus the manufacturing process can be simplified, the production efficiency can be improved and the production cost can be reduced.
Abstract:
A display panel includes a base substrate; an anode material layer including an anode of a light emitting element on the base substrate; a pixel definition layer on a side of the anode material layer away from the base substrate, and defining a subpixel aperture; an organic material layer at least partially in the subpixel aperture and on a side of the anode away from the base substrate; a cathode layer on a side of the organic material layer away from the base substrate; and a first auxiliary cathode layer on a side of the pixel definition layer away from the base substrate. The first auxiliary cathode layer is connected to the cathode layer, and includes a conductive material. An orthographic projection of the first auxiliary cathode layer on the base substrate at least partially overlaps with an orthographic projection of the pixel definition layer on the base substrate.
Abstract:
A pixel driving circuit includes a light-emitting control sub-circuit and a plurality of display control sub-circuits. The light-emitting control sub-circuit is connected to a light-emitting control signal terminal, a power supply signal terminal and a light-emitting control node, and is configured to transmit a power supply signal from the power supply signal terminal to the light-emitting control node in response to a light-emitting control signal received from the light-emitting control signal terminal. Each display control sub-circuit is connected to the light-emitting control node, a scan signal terminal, a data signal terminal, and a light-emitting element. Each display control sub-circuit is configured to, in response to a scan signal received from the scan signal terminal, output a driving signal according to the power supply signal and a data signal from the data signal terminal, so as to drive the light-emitting element to emit light.
Abstract:
In an embodiment, there is provided a display substrate assembly. The display substrate assembly includes: a base substrate; a light-shielding layer on the base substrate, the light-shielding layer having a plurality of light-shielding elements; and a plurality of polysilicon layers respectively on sides of the plurality of light-shielding elements away from the base substrate; wherein the plurality of light-shielding elements have different sizes such that energy lights reflected and/or refracted through the plurality of light-shielding elements of different sizes respectively generate different thermal energy distributions on the plurality of polysilicon layers corresponding to the plurality of light-shielding elements, causing the plurality of polysilicon layers to have different crystal forms. Meanwhile, a method of manufacturing the display substrate assembly and a display apparatus including the aforementioned display substrate assembly are also provided.
Abstract:
A display substrate having a display area and a gate-on-array (GOA) area outside the display area is provided. The display substrate includes a base substrate a light shielding layer on the base substrate; an insulating layer on a side of the light shielding layer away from the base substrate; and a GOA signal line on a side of the insulating layer away from the light shielding layer, and is connected electrically in parallel with a first part of the light shielding layer, the first part being in the GOA area. The display substrate includes a plurality of first vias extending through the insulating layer in the GOA area. The GOA signal line is electrically connected to the first part of the light shielding layer through the plurality of first vias respectively, thereby connecting the GOA signal line and the first part of the light shielding layer electrically in parallel.
Abstract:
A display panel is provided, which includes a base substrate, and a light-emitting device and an encapsulation structure sequentially arranged on the base substrate. The encapsulation structure includes at least one first encapsulation film layer, the first encapsulation film layer includes at least two inorganic layers arranged in a stack, and refractive indexes of the at least two inorganic layers sequentially increase in a direction close to the light-emitting device. The first encapsulation film layer is configured to adjust an angle of an ambient light incident on the light-emitting device to reduce the ambient light reflected from the display panel.
Abstract:
The present application discloses a display substrate including a plurality of pixels arranged in an array of matrix. Each of the plurality of pixels includes several OLED devices emitting light of different color. Each OLED device includes at least a first electrode, a second electrode, and an emitting layer located between the first electrode and the second electrode. At least one layer in either part of the first electrode or the emitting layer forming a microcavity characterized by an optical length. Any two OLED devices emitting light of same color in two adjacent pixels of the plurality of pixels have two microcavities respectively with different optical lengths. At least one OLED device emitting any one colored light in any one pixel of the plurality of pixels has a microcavity with different optical length from other OLED devices emitting light of different color in the same one pixel.
Abstract:
Embodiments of the present application provide an Oxide TFT, a manufacturing method thereof, an array substrate and a display device. The Oxide TFT includes a base substrate; a gate electrode, a gate insulating layer and an active layer which are located on the base substrate; a source electrode and a drain electrode, the active layer is at least partly covered with the source electrode and the drain electrode; and a channel protection layer located between the source electrode and the drain electrode, each of the source electrode and the drain electrode includes at least part of a first metallic layer and at least part of a second metallic layer, the first metallic and the second metallic layer are stacked one on another, the channel protection layer is of a metal oxide.