Abstract:
An example method is provided and includes configuring a service on a network element; associating a directly connected port with the service to create a port channel between the network element and a directly connected service appliance, the port channel comprising a plurality of member ports; performing an auto-discovery process for each of the member ports; and, upon successful completion of the performing, indicating on the network element that the service appliance is operational. In certain embodiments, the network element includes an intelligent service card manager module (“ISCM”) that forms part of a Remote Integrated Service Engine (“RISE”) element with a corresponding intelligent service card client module (“ISCC”) installed on the service appliance. The method may further include, upon unsuccessful completion of the auto-discovery process, repeating the auto-discovery process.
Abstract:
In some embodiments, a virtual device context (vDC) domain may be advertised to other network devices. If at least a partition of each device is determined to belong to the same vDC domain, the network interface communicating with the at least one device may be activated.
Abstract:
In one embodiment, an indication of a plurality of network nodes and load balancing criteria is received. A plurality of forwarding entries are created, wherein a forwarding entry of the plurality of forwarding entries is based upon the load balancing criteria and corresponds to a network node of the plurality of network nodes. A network element applies the plurality of forwarding entries to data packets to load balance the data packets among the plurality of network nodes. A plurality of counts are tracked, wherein each count corresponds to at least one forwarding entry of the plurality of forwarding entries and represents the number of times the corresponding at least one forwarding entry is used to redirect a data packet.
Abstract:
In one embodiment a forwarding policy from a first network node coupled to a network element is received. The forwarding policy specifies an address of a second network node coupled to the network element. A plurality of ports of the network element are identified, wherein the second network node is accessible from the network element through each of the plurality of ports. The forwarding policy is applied to the plurality of ports of the network element. Network traffic received at a port of the plurality of ports from the second network node is forwarded to the first network node.
Abstract:
Embodiments include receiving configuration information including a match criterion for packets received at a network device in a network and a pool of layer 3 addresses associated with a set of servers in the network, resolving layer 2 destination addresses based on the layer 3 addresses of the servers, and programming a hardware layer of the network device based, at least in part, on the match criterion, the pool of layer 3 addresses, and the layer 2 destination addresses. Specific embodiments include configuring a policy to indicate that packets from an external source are to be forwarded to a server of the set of servers. Further embodiments include receiving a packet at the network device, and matching the packet to the pool of layer 3 addresses and the resolved layer 2 addresses based, at least in part, on the match criterion programmed in the hardware layer.
Abstract:
In one embodiment, an indication of a plurality of network nodes, load balancing criteria, and one or more access control list (ACL) entries are received. A plurality of forwarding entries are created, a forwarding entry of the plurality of forwarding entries based upon an ACL entry and the load balancing criteria and corresponding to a network node of the plurality of network nodes. A network element applies the plurality of forwarding entries to network traffic to selectively load balance the network traffic, wherein network traffic meeting the load balancing criteria and permitted by the one or more ACL entries is load balanced among the plurality of network nodes.
Abstract:
In one embodiment a packet of data is received at a network element. At least one field is parsed from the packet of data. A forwarding entry is identified from a plurality of forwarding entries based on the at least one field. The forwarding entry of the plurality of forwarding entries is formed by merging information from at least one load balancing entry and at least one access control list (ACL) entry. The data packet is forwarded through a port of the network element in accordance with the identified forwarding entry.
Abstract:
Methods and apparatus for providing one-arm node clustering using a port channel are provided herein. An example application node may be communicatively connected to at least one application node, and the application node may be connected to a network through a port channel. The application node may include: a link included in the port channel for accommodating the network data being communicated between the remote client and server; and a processor configured to send/receive a cluster control packet to/from the at least one application node through the link included in the port channel.
Abstract:
In one embodiment, load balancing criteria and an indication of a plurality of network nodes is received. A plurality of forwarding entries are created based on the load balancing criteria and the indication of the plurality of nodes. A content addressable memory of a network element is programmed with the plurality of forwarding entries. The network element selectively load balances network traffic by applying the plurality of forwarding entries to the network traffic, wherein network traffic meeting the load balancing criteria is load balanced among the plurality of network nodes.
Abstract:
In an example, a network switch is configured to natively act as a high-speed load balancer. Numerous load-balancing techniques may be used, including one that bases the traffic “bucket” on a source IP address of an incoming packet. This particular technique provides a network administrator a powerful tool for shaping network traffic. For example, by assigning certain classes of computers on the network particular IP addresses, the network administrator can ensure that the traffic is load balanced in a desirable fashion. To further increase flexibility, the network administrator may apply a bit mask to the IP address, and expose only a portion, selected from a desired octet of the address.